

    
      
          
            
  
Welcome to DESlib documentation!

DESlib is an ensemble learning library focusing the implementation of the state-of-the-art techniques for dynamic classifier and ensemble selection.

DESlib is a work in progress. Contributions are welcomed through its GitHub page: https://github.com/Menelau/DESlib.


Introduction:

Dynamic Selection (DS) refers to techniques in which the base classifiers are selected
on the fly, according to each new sample to be classified. Only the most competent, or an ensemble containing the most competent classifiers is selected to predict
the label of a specific test sample. The rationale for such techniques is that not every classifier in
the pool is an expert in classifying all unknown samples; rather, each base classifier is an expert in
a different local region of the feature space.

DS is one of the most promising MCS approaches due to the fact that
more and more works are reporting the superior performance of such techniques over static combination methods. Such techniques
have achieved better classification performance especially when dealing with small-sized and imbalanced datasets.




Installation:

The package can be installed using pip:

Stable version:

pip install deslib





Latest version (under development):

pip install git+https://github.com/Menelau/DESlib





DESlib is tested to work with Python 3.5, and 3.6. The dependency requirements are:


	scipy(>=0.13.3)


	numpy(>=1.10.4)


	scikit-learn(>=0.19.0)




These dependencies are automaticatically installed using the pip commands above.




API Reference:



	Dynamic Ensemble Selection
	DES class

	META-DES

	DES Clustering

	DES-P

	DES-KNN

	KNOP

	KNORA-E

	KNORA-U

	Probabilistic
	Randomized Reference Classifier (RRC)

	DES-KL

	DES-Minimum Difference

	DES-Exponential

	DES-Logarithmic









	Dynamic Classifier Selection
	DCS class

	A posteriori

	A Priori

	LCA

	MCB

	MLA

	OLA

	Rank





	Static Selection
	Oracle

	Single Best

	Static Selection





	Util
	Diversity

	Aggregation

	Probabilistic Functions












Examples:

Example using the KNORA-E techniques using a random forest to generate the pool of classifiers:

from sklearn.ensemble import RandomForestClassifier
from deslib.des.knora_e import KNORAE


# Train a pool of 10 classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10)
pool_classifiers.fit(X_train, y_train)

# Initialize the DES model
knorae = KNORAE(pool_classifiers)

# Preprocess the Dynamic Selection dataset (DSEL)
knorae.fit(X_dsel, y_dsel)

# Predict new examples:
knorae.predict(X_test)





The library accepts any list of classifiers (from scikit-learn) as input, including a list containing different classifier models (heterogeneous ensembles).
More examples to use the API can be found in the documentation and im the Examples directory.
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Dynamic Ensemble Selection

The deslib.des provides a set of key dynamic ensemble selection algorithms (DES). DES techniques by default
selects all base classifiers that attain a certain competence level.



	DES class

	META-DES

	DES Clustering

	DES-P

	DES-KNN

	KNOP

	KNORA-E

	KNORA-U

	Probabilistic
	Randomized Reference Classifier (RRC)

	DES-KL

	DES-Minimum Difference

	DES-Exponential

	DES-Logarithmic













          

      

      

    

  

    
      
          
            
  
DES class


	
class deslib.des.base.DES(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/base.py#L8-L181]

	Base class for a Dynamic Ensemble Selection (DES).

All dynamic ensemble selection techniques should inherit from this class.

Warning: This class should not be instantiated directly, use derived classes instead.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.
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classify_instance(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/base.py#L105-L143]

	Predicts the label of the corresponding query sample.

If self.mode == “selection”, the selected ensemble is combined using the
majority voting rule

If self.mode == “weighting”, all base classifiers are used for classification, however their influence
in the final decision are weighted according to their estimated competence level. The weighted majority voting
scheme is used to combine the decisions of the base classifiers.

If self.mode == “hybrid”,  A hybrid Dynamic selection and weighting approach is used. First an
ensemble with the competent base classifiers are selected. Then, their decisions are aggregated using the
weighted majority voting rule according to its competence level estimates.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample







	Returns

	
	predicted_label: The predicted label of the query

	












	
estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/base.py#L69-L85]

	Estimate the competence of each base classifier ci
the classification of the query sample x.
Returns an array containing the level of competence estimated
for each base classifier. The size of the vector is equals to
the size of the generated_pool of classifiers.


	Parameters

	
	queryarray containing the test sample = [n_features]

	





	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
predict_proba_instance(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/base.py#L145-L181]

	Predicts the posterior probabilities of the corresponding query sample.

If self.mode == “selection”, the selected ensemble is used to estimate the probabilities. The average rule is
used to give probabilities estimates.

If self.mode == “weighting”, all base classifiers are used for estimating the probabilities, however their
influence in the final decision are weighted according to their estimated competence level. A weighted average
method is used to give the probabilities estimates.

If self.mode == “Hybrid”,  A hybrid Dynamic selection and weighting approach is used. First an
ensemble with the competent base classifiers are selected. Then, their decisions are aggregated using a
weighted average rule to give the probabilities estimates.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample



	Returns

	

	——-

	

	predicted_probaarray = [n_classes] with the probability estimates for all classes

	












	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/base.py#L87-L103]

	Select the most competent classifier for
the classification of the query sample x.
The most competent classifier (dcs) or an ensemble
with the most competent classifiers (des) is returned


	Parameters

	
	competencesarray of shape = [n_classifiers]

	The estimated competence level for the base classifiers







	Returns

	
	indicesList of index of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
META-DES


	
class deslib.des.meta_des.METADES(pool_classifiers, meta_classifier=MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True), k=7, kp=5, Hc=1.0, gamma=0.5, mode='selection', DFP=False, with_IH=False, safe_k=None, IH_rate=0.3)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/meta_des.py#L18-L338]

	Meta learning for dynamic ensemble selection (META-DES).

This method works selects all classifiers that correctly classified at least
one sample belonging to the region of competence of the test sample x. Each
selected classifier has a number of votes equals to the number of samples in the
region of competence that it predicts the correct label.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	kpint (Default = 5)

	Number of output profiles used to estimate the competence of the base classifiers.



	Hcfloat (Default = 1.0)

	Sample selection threshold.



	gammafloat(Default = 0.5)

	Threshold used to select the base classifier. Only the base classifiers with competence level higher than
the gamma are selected to compose the ensemble.



	modeString (Default = “selection”)

	Determines the mode of META-des that is used (selection, weighting or hybrid).



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between using the DS
algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.









References
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Cruz, R.M., Sabourin, R. and Cavalcanti, G.D., 2015, July. META-des. H: a dynamic ensemble selection technique
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/meta_des.py#L294-L325]

	Estimate the competence of each base classifier ci
the classification of the query sample x.
Returns an array containing the level of competence estimated
for each base classifier. The size of the vector is equals to
the size of the generated_pool of classifiers.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample







	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/meta_des.py#L109-L135]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xarray of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/meta_des.py#L273-L292]

	Selects the base classifiers that obtained a competence level higher than the predefined
threshold Gamma.


	Parameters

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier







	Returns

	
	indicesthe indices of the selected base classifiers

	



















          

      

      

    

  

    
      
          
            
  
DES Clustering


	
class deslib.des.des_clustering.DESClustering(pool_classifiers, k=5, mode='selection', pct_accuracy=0.5, pct_diversity=0.33, more_diverse=True, metric='DF', rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_clustering.py#L16-L253]

	Dynamic ensemble selection-Clustering (DES-Clustering).
This method selects an ensemble of classifiers taking into account the
accuracy and more_diverse of the base classifiers. The K-means algorithm is used to define the region of competence
First the most accurate classifiers are selected. Next, the most diverse classifiers, in relation to the selected
classifiers, are added to the ensemble


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 5)

	Number of neighbors used to estimate the competence of the base classifiers.



	modeString (Default = “selection”)

	whether the technique will perform dynamic selection, dynamic weighting
or an hybrid approach for classification



	pct_accuracyfloat (Default = 0.5)

	Percentage of base classifiers selected based on accuracy



	pct_diversityfloat (Default = 0.33)

	Percentage of base classifiers selected based n diversity



	more_diverseBoolean (Default = True)

	Whether we select the most or the least diverse classifiers to add to the pre-selected ensemble



	metricString (Default = ‘df’)

	Diversity diversity_func used to estimate the diversity of the base classifiers. Can
be either the double fault (df), Q-statistics (Q), or error correlation (corr)



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_clustering.py#L177-L196]

	get the competence estimates of each base classifier ci for the classification of the query sample x.

In this case, the competences are pre-calculated based on each cluster. So this method computes the
nearest cluster of the query sample and get the pre-calculated competences of the base classifiers
for the nearest cluster.


	Parameters

	
	queryarray of shape = [n_features]

	The query sample







	Returns

	
	competencesarray = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_clustering.py#L95-L146]

	Train the DS model by setting the Clustering algorithm and
pre-processing the information required to apply the DS
methods. In this case, after fitting the roc_algorithm method, the ensemble containing
most competent classifiers taking into account accuracy and diversity are
estimated for each cluster.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.



	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_clustering.py#L198-L217]

	Select an ensemble with the most accurate and most diverse classifier for the classification of the query.

Since the method is based on roc_algorithm, the ensemble for each cluster is already pre-calculated. So, we only
need to estimate which is the nearest cluster and then get the classifiers that were pre-selected for this
cluster


	Parameters

	
	queryarray of shape = [n_features]

	The query sample







	Returns

	
	indicesList containing the indices of the selected base classifiers

	



















          

      

      

    

  

    
      
          
            
  
DES-P


	
class deslib.des.des_p.DESP(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_p.py#L12-L112]

	Dynamic ensemble selection-Performance(des-p).
This method selects all base classifiers that achieve a classification
performance, in the region of competence, that is higher than the random
classifier (RC). The performance of the random classifier is defined by
RC = 1/M, where M is the number of classes in the problem.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_p.py#L67-L88]

	
	estimate the competence of each base classifier in the pool. The competence level is estimated

	based on the classification accuracy of the base classifier for the region of competence.






	Parameters

	
	queryarray of shape = [n_features]

	The test sample







	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_p.py#L90-L112]

	Selects all base classifiers that obtained a local classification accuracy higher than the
Random Classifier. The performance of the random classifier is denoted 1/L, where L is the number of classes
in the problem.


	Parameters

	
	competencesarray of shape = [n_classifiers] containing the competence level estimated

	for each base classifier.







	Returns

	
	indicesList with the indices of the selected base classifiers.

	



















          

      

      

    

  

    
      
          
            
  
DES-KNN


	
class deslib.des.des_knn.DESKNN(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', pct_accuracy=0.5, pct_diversity=0.3, more_diverse=True, metric='DF')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_knn.py#L14-L209]

	Dynamic ensemble Selection KNN (DES-KNN).
This method selects an ensemble of classifiers taking into account the
accuracy and more_diverse of the base classifiers. First the most accurate classifiers
are selected. Next, the most diverse classifiers, in relation to the selected classifiers,
are added to the ensemble


	Parameters

	
	pool_classifierstype, the generated_pool of classifiers trained for the corresponding

	

	classification problem.

	

	kint (Default = 5)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	whether the technique will perform dynamic selection, dynamic weighting
or an hybrid approach for classification



	pct_accuracyfloat (Default = 0.5)

	Percentage of base classifiers selected based on accuracy



	pct_diversityfloat (Default = 0.3)

	Percentage of base classifiers selected based n diversity



	more_diverseBoolean (Default = True)

	Whether we select the most or the least diverse classifiers to add to the pre-selected ensemble



	metricString (Default = ‘df’)

	Diversity diversity_func used to estimate the diversity of the base classifiers. Can
be either the double fault (df), Q-statistics (Q), or error correlation (corr)
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_knn.py#L99-L144]

	get the competence estimates of each base classifier ci for the classification of the query sample x.

The competence is estimated using the accuracy and diversity criteria. First the classification accuracy
of the base classifiers in the region of competence is estimated. Then the diversity of the base classifiers
in the region of competence is estimated.

The method returns two arrays: One containing the accuracy and the other the diversity of each base classifier.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier



	diversityarray of shape = [n_classifiers]

	The diversity estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/des_knn.py#L146-L173]

	Select an ensemble containing the N most accurate ant the J most diverse classifiers for the classification
of the query


	Parameters

	
	queryarray of shape = [n_features]

	The test sample







	Returns

	
	indicesthe indices of the selected base classifiers

	



















          

      

      

    

  

    
      
          
            
  
KNOP


	
class deslib.des.knop.KNOP(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, weighted=False)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knop.py#L13-L169]

	k-Nearest Output Profiles (KNOP).


	Parameters

	
	pool_classifierstype, the generated_pool of classifiers trained for the corresponding

	

	classification problem.

	

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knop.py#L93-L119]

	In this method, the competence of the base classifiers is simply computed as the number of samples
in the region of competence that it correctly classified. However, the region of competence here is
estimated in the decision space using output profiles.

Returns an array containing the level of competence estimated.
The size of the array is equals to the size of the generated_pool of classifiers.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample to be classified







	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knop.py#L69-L91]

	Train the DS model by setting the KNN algorithm and
pre-process the information required to apply the DS
methods. In this case, the scores of the base classifiers for the dynamic selection dataset (DSEL)
are pre-calculated to transform each sample in DSEL into an output profile.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	containing the input data.



	yarray of shape = [n_samples]

	Class labels of each sample in X.







	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knop.py#L121-L149]

	Select the base classifiers for the classification of the query sample.

Each base classifier can be selected more than once. The number of times a base classifier is selected (votes)
is equals to the number of samples it correctly classified in the region of competence.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample to be classified







	Returns

	
	votesarray containing the votes of the ensemble for each class

	



















          

      

      

    

  

    
      
          
            
  
KNORA-E


	
class deslib.des.knora_e.KNORAE(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knora_e.py#L12-L125]

	k-Nearest Oracles Eliminate (KNORA-E).

This method searches for a local Oracle, which is a base classifier that correctly classify all
samples belonging to the region of competence of the test sample. All classifiers
with a perfect performance in the region of competence is selected. In the case that 
no classifiers achieve a perfect accuracy, the size of the region of competence is reduced
(by one neighbor) and the performance of the classifiers are re-evaluated. The outputs
of the selected ensemble of classifiers is combined using the majority voting scheme.


	Parameters

	
	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knora_e.py#L61-L91]

	Estimate the competence of the base classifiers. In the case of the KNORA-E technique, the classifiers
are only considered competent when they achieve a 100% accuracy in the region of competence. For each base,
we estimate the maximum size of the region of competence that it is a local oracle (achieves 100%). The
competence level estimate is then the maximum size of the region of competence that the corresponding base
classifier is a local Oracle.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample







	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier in the pool














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knora_e.py#L93-L125]

	Selects all base classifiers that obtained a local accuracy of 100% in the region of competence
(i.e., local oracle). In the case that no base classifiers obtain 100% accuracy, the size of the region
of competence is reduced and the search for the local oracle is restarted.


	Parameters

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier







	Returns

	
	indicesList with the indices of the selected base classifiers

	







Notes

Instead of re-applying the method several times (reducing the size of the region of competence),
we compute the number of consecutive correct classification of each base classifier starting from the
closest neighbor to the more distant in the estimate_competence function. The number of consecutive correct
classification represents the size of the region of competence in which the corresponding base classifier
is an Local Oracle. Then, we select all base classifiers with the maximum value for the number of consecutive
correct classification. This speed up the selection process.













          

      

      

    

  

    
      
          
            
  
KNORA-U


	
class deslib.des.knora_u.KNORAU(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knora_u.py#L13-L126]

	k-Nearest Oracles Union (KNORA-U).

This method works selects all classifiers that correctly classified at least
one sample belonging to the region of competence of the test sample x. Each 
selected classifier has a number of votes equals to the number of samples in the
region of competence that it predicts the correct label.


	Parameters

	
	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	aknnBoolean (Default = False)

	Determines the type of KNN algorithm that is used. set to true for the A-KNN method.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knora_u.py#L63-L84]

	The competence of the base classifiers is simply estimated as the number of samples
in the region of competence that it correctly classified.


	Parameters

	
	queryarray of shape = [n_features] containing the test sample

	





	Returns

	
	competencesarray of shape = [n_classifiers] containing the competence level estimated

	for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/knora_u.py#L86-L108]

	Select the base classifiers for the classification of the query sample.

Each base classifier can be selected more than once. The number of times a base classifier is selected (votes)
is equals to the number of samples it correctly classified in the region of competence.


	Parameters

	
	queryarray of shape = [n_features] containing the test sample

	





	Returns

	
	votesthe number of votes for each class

	



















          

      

      

    

  

    
      
          
            
  
Probabilistic


	
class deslib.des.probabilistic.Probabilistic(pool_classifiers, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', selection_threshold=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L15-L191]

	Base class for a DS method based on the potential function model.
ALL DS methods based on the Potential function should inherit from this class

Warning: This class should not be used directly.
Use derived classes instead.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = None)

	Number of neighbors used to estimate the competence of the base classifiers. If k = None, the whole dynamic
selection dataset is used, and the influence of each sample is based on its distance to the query.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L109-L136]

	estimate the competence of each base classifier ci using the source of competence C_src
and the potential function model. The source of competence C_src for all data points in DSEL
is already pre-computed in the fit() steps.


	Parameters

	
	queryarray containing the test sample = [n_features]

	





	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L76-L107]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of competence (C_src)
is calculated for each data point in DSEL in order to speed up the process during the
testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method
based on this paradigm


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
static potential_func(dist)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L164-L178]

	Gaussian potential function to decrease the
influence of the source of competence as the distance between xk and the query increases


	Parameters

	
	distarray of shape = [self.n_samples]

	distance between the corresponding sample to the query







	Returns

	
	The result of the potential function for each value in (dist)

	












	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L138-L162]

	Selects the base classifiers that obtained a competence level higher than the predefined threshold.
In this case, the threshold indicates the competence of the random classifier.


	Parameters

	
	competencesarray of shape = [n_classifiers]

	The estimated competence level for the base classifiers







	Returns

	
	indicesthe indices of the selected base classifiers

	












	
source_competence()[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L180-L191]

	Method used to estimate the source of competence at each data point.

Each DS technique based on this paradigm should define its computation of C_src


	Returns

	
	C_srcarray of shape = [n_samples, n_classifiers]

	The competence source for each base classifier at each data point.



















	Randomized Reference Classifier (RRC)

	DES-KL

	DES-Minimum Difference

	DES-Exponential

	DES-Logarithmic









          

      

      

    

  

    
      
          
            
  
Randomized Reference Classifier (RRC)


	
class deslib.des.probabilistic.RRC(pool_classifiers, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L333-L406]

	DES technique based on the Randomized Reference Classifier method (DES-RRC).


	Parameters

	
	pool_classifierstype, the generated_pool of classifiers trained for the corresponding

	

	classification problem.

	

	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = None)

	Number of neighbors used to estimate the competence of the base classifiers. If k = None, the whole dynamic
selection dataset is used, and the influence of each sample is based on its distance to the query.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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source_competence()[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L386-L406]

	Calculates the source of competence using the randomized reference classifier (RRC) method.

The source of competence C_src at the validation point xk calculated using the probabilistic model based on
the supports obtained by the base classifier and randomized reference classifier (RRC) model.
The probabilistic modeling of the classifier competence is calculated using the ccprmod function.


	Returns

	
	C_srcarray of shape = [n_samples, n_classifiers]

	The competence source for each base classifier at each data point.





















          

      

      

    

  

    
      
          
            
  
DES-KL


	
class deslib.des.probabilistic.DESKL(pool_classifiers, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L409-L486]

	Dynamic Ensemble Selection-Kullback-Leibler divergence (DES-KL).

This method estimates the competence of the classifier from the
information theory perspective. The competence of the base classifiers
is calculated as the KL divergence between the vector of class supports
produced by the base classifier and the outputs of a random classifier (RC).
RC = 1/L, L being the number of classes in the problem. Classifiers with a
competence higher than the competence of the random classifier is selected.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = None)

	Number of neighbors used to estimate the competence of the base classifiers. If k = None, the whole dynamic
selection dataset is used, and the influence of each sample is based on its distance to the query.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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source_competence()[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L466-L486]

	Calculates the source of competence using the KL divergence method.

The source of competence C_src at the validation point xk calculated using the KL divergence
between the vector of class supports produced by the base classifier and the outputs of a random classifier (RC)
RC = 1/L, L being the number of classes in the problem. The value of C_src is negative if the base classifier
misclassified the instance xk


	Returns

	
	C_srcarray of shape = [n_samples, n_classifiers]

	The competence source for each base classifier at each data point.





















          

      

      

    

  

    
      
          
            
  
DES-Minimum Difference


	
class deslib.des.probabilistic.MinimumDifference(pool_classifiers, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L489-L560]

	Computes the competence level of the classifiers based on the difference between the support obtained by each class.
The competence level at a data point (xk) is equal to the minimum difference between the support obtained to the
correct class and the support obtained for different classes.

The influence of each sample xk is defined according to a Gaussian function model[2]. Samples that are closer to
the query have a higher influence in the competence estimation.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = None)

	Number of neighbors used to estimate the competence of the base classifiers. If k = None, the whole dynamic
selection dataset is used, and the influence of each sample is based on its distance to the query.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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source_competence()[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L544-L560]

	Calculates the source of competence using the Minimum Difference method.

The source of competence C_src at the validation point xk calculated by the Minimum Difference between
the supports obtained to the correct class and the support obtained by the other classes


	Returns

	
	C_srcarray of shape = [n_samples, n_classifiers]

	The competence source for each base classifier at each data point.





















          

      

      

    

  

    
      
          
            
  
DES-Exponential


	
class deslib.des.probabilistic.Exponential(pool_classifiers, k=None, DFP=False, safe_k=None, with_IH=False, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L259-L330]

	The source of competence C_src at the validation point xk is a product of two factors:  The absolute value of
the competence and the sign. The value of the source competence is inverse proportional to the normalized entropy
of its supports vector. The sign of competence is simply determined by correct/incorrect classification of xk [1].

The influence of each sample xk is defined according to a Gaussian function model[2]. Samples that are closer to
the query have a higher influence in the competence estimation.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = None)

	Number of neighbors used to estimate the competence of the base classifiers. If k = None, the whole dynamic
selection dataset is used, and the influence of each sample is based on its distance to the query.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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source_competence()[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L313-L330]

	The source of competence C_src at the validation point xk is a product of two factors: The absolute value of
the competence and the sign. The value of the source competence is inverse proportional
to the normalized entropy of its supports vector.The sign of competence is simply determined by
correct/incorrect classification of the instance xk.


	Returns

	
	C_srcarray of shape = [n_samples, n_classifiers]

	The competence source for each base classifier at each data point.





















          

      

      

    

  

    
      
          
            
  
DES-Logarithmic


	
class deslib.des.probabilistic.Logarithmic(pool_classifiers, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection')[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L194-L256]

	This method estimates the competence of the classifier based on the logarithmic
difference between the supports obtained by the base classifier.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = None)

	Number of neighbors used to estimate the competence of the base classifiers. If k = None, the whole dynamic
selection dataset is used, and the influence of each sample is based on its distance to the query.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide between
using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.
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source_competence()[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/des/probabilistic.py#L240-L256]

	The source of competence C_src at the validation point xk is calculated by logarithm in the support
obtained by the base classifier.


	Returns

	
	C_srcarray of shape = [n_samples, n_classifiers]

	The competence source for each base classifier at each data point.





















          

      

      

    

  

    
      
          
            
  
Dynamic Classifier Selection

The deslib.dcs provides a set of key dynamic classifier selection algorithms (DCS).



	DCS class

	A posteriori

	A Priori

	LCA

	MCB

	MLA

	OLA

	Rank









          

      

      

    

  

    
      
          
            
  
DCS class


	
class deslib.dcs.base.DCS(pool_classifiers, k=7, DFP=False, safe_k=None, with_IH=False, IH_rate=0.3, selection_method='best', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L9-L222]

	Base class for a Dynamic Classifier Selection (dcs) method.
All dynamic classifier selection classes should inherit from this class.

Warning: This class should not be used directly, use derived classes instead.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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classify_instance(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L170-L195]

	Predicts the class label of the corresponding query sample.

If self.mode == “all”, the majority voting scheme is used to aggregate the predictions of all classifiers with
the max competence level estimate.


	Parameters

	
	queryarray containing the test sample = [n_features]

	





	Returns

	
	The predicted label of the query

	












	
estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L94-L106]

	estimate the competence of each base classifier for the classification of the query sample.


	Parameters

	
	queryarray containing the test sample = [n_features]

	





	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier in the pool














	
predict_proba_instance(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L197-L222]

	Predicts the posterior probabilities of the corresponding query sample.

If self.mode == “all”, get the probability estimates of the selected ensemble. Otherwise,
the technique gets the probability estimates from the selected base classifier


	Parameters

	
	queryarray containing the test sample = [n_features]

	





	Returns

	
	predicted_probaarray = [n_classes] with the probability estimates for all classes

	












	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
A posteriori


	
class deslib.dcs.a_posteriori.APosteriori(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='diff', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/a_posteriori.py#L12-L138]

	A Posteriori Dynamic classifier selection.

This method works similarly to the LCA technique. The only difference is that it uses
the scores obtained by the base classifiers as well as the distance between the test sample
and each pattern in the region of competence are also considered in the competence estimation.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/a_posteriori.py#L83-L138]

	estimate the competence of each base classifier ci
the classification of the query sample using the A Posteriori method.

The A Posteriori method considers the probability of correct classification of the base classifier
ci, taking into account the supports obtained by the base classifier ci for the samples belonging to the
region of competence. The probability of correct classification for a base classifier ci is calculated taking
into account only the samples in the region of competence from a specific class wl. In this case, wl is the
predict class of the base classifier ci for the query sample.

This method also weights the influence of each training sample according to its Euclidean distance to the
query instance. The closest samples have a higher influence in the computation of the competence level.

Returns an array containing the level of competence estimated using the LCA method
for each base classifier. The size of the array is equals to the size of the pool of classifiers.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
A Priori


	
class deslib.dcs.a_priori.APriori(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='diff', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/a_priori.py#L12-L122]

	A Priori dynamic classifier selection.

This method works similarly to the OLA technique. The only difference is that it uses
the scores obtained by the base classifiers as well as the distance between the test sample
and each pattern in the region of competence are also considered in the competence estimation.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/a_priori.py#L83-L122]

	estimate the competence of each base classifier ci
the classification of the query sample using the A Priori method.

The A Priori method considers the probability of correct classification of the base classifier
ci, in the region of competence, taking into account the supports obtained by the base classifier ci. Hence,
the vector containing the posterior probabilities for each class is considered instead of only the label
assigned to each sample in the region of competence. This method also weights the influence
of each training sample according to its Euclidean distance to the query instance. The closest samples have
a higher influence in the computation of the competence level.

Returns an array containing the level of competence estimated using the LCA method
for each base classifier. The size of the array is equals to the size of the pool of classifiers.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
LCA


	
class deslib.dcs.lca.LCA(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/lca.py#L12-L122]

	Local Classifier Accuracy (LCA).

Evaluates the competence level of each individual classifiers and
select the most competent one to predict the label of each test sample.
The competence of each base classifier is calculated based on its local 
accuracy with respect to some output class. Consider a classifier that assigns
a test sample to class Ci. The competence is estimated by the percentage of the local training
samples assigned to class Ci by this classifier that have been correctly labeled.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/lca.py#L81-L122]

	estimate the competence of each base classifier ci
the classification of the query sample using the local class accuracy method.

In this algorithm the K-Nearest Neighbors of the test sample are estimated. Then, the
local accuracy of the base classifiers is estimated by its classification accuracy taking into account
only the samples belonging to the class wl in this neighborhood.

Returns an array containing the level of competence estimated using the LCA method
for each base classifier. The size of the array is equals to the size of the pool of classifiers.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
MCB


	
class deslib.dcs.mcb.MCB(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, similarity_threshold=0.7, selection_method='diff', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/mcb.py#L12-L160]

	Multiple Classifier Behaviour (MCB).

The MCB method evaluates the competence level of each individual classifiers taking into account
both the local accuracy of the base


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/mcb.py#L90-L140]

	estimate the competence of each base classifier ci
the classification of the query sample using the Multiple Classifier Behaviour criterion.

The region of competence in this method is estimated taking into account the feature space and the decision
space (using the behaviour knowledge space method [4]). First, the k-Nearest Neighbors of the query sample
are defined in the feature space to compose the region of competence. Then, the similarity in the BKS space
between the query and the instances in its region of competence are estimated. Instances with similarity lower
than a predefined threshold are removed from the region of competence.

Then, the competence level of the base classifiers are estimated based on their classification accuracy in the
final region of competence.

Returns an array containing the level of competence estimated using the MCB method
for each base classifier. The size of the array is equals to the size of the generated_pool of classifiers.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
MLA


	
class deslib.dcs.mla.MLA(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/mla.py#L12-L124]

	Modified Local Accuracy (MLA).

Similar to the LCA technique. The only difference is that the output of each base classifier
is weighted by the distance between the test sample and each pattern in the region of competence 
for the estimation of the classifiers competences. Only the classifier that achieved the highest
competence level is select to predict the label of the test sample x.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/mla.py#L78-L124]

	estimate the competence of each base classifier ci
the classification of the query sample using the Modified Local Accuracy (MLA) method.

Two versions of the LCA are considered for the competence estimates:

The Modified local accuracy of the base classifiers is estimated by its classification accuracy taking
into account only the samples belonging to the class wl in the region of competence. In this case, wl is
the predict class of the base classifier ci for the query sample. This method also weights the influence
of each training sample according to its Euclidean distance to the query instance. The closest samples have
a higher influence in the computation of the competence level.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
OLA


	
class deslib.dcs.ola.OLA(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/ola.py#L12-L105]

	Overall Classifier Accuracy (OLA).

The OLA method evaluates the competence level of each individual classifiers and
select the most competent one to predict the label of each test sample x.
The competence of each base classifier is calculated as its classification accuracy
in the neighborhood of x (region of competence).


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/ola.py#L76-L105]

	estimate the competence of each base classifier ci
the classification of the query sample using the Overall Local Accuracy criterion.

The competences for each base classifier ci is estimated by its classification accuracy considering
the k-Nearest Neighbors.

Returns an array containing the level of competence estimated using the OLA method
for each base classifier. The size of the array is equals to the size of the generated_pool of classifiers.


	Parameters

	
	queryarray cf shape  = [n_features]

	The query sample



	Returns

	

	——-

	

	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
Rank


	
class deslib.dcs.rank.Rank(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, rng=<mtrand.RandomState object>)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/rank.py#L12-L118]

	Modified Classifier Rank.

The modified classifier rank method evaluates the competence level of each individual classifiers
and select the most competent one to predict the label of each test sample x.
The competence of each base classifier is calculated as the number of correctly classified samples,
starting from the closest neighbor of x. The classifier with the highest number of correctly classified
samples is selected.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict” and “predict_proba”.



	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base classifiers.



	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.



	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to decide
between using the DS algorithm or the KNN for classification of a given query sample.



	safe_kint (default = None)

	The size of the indecision region.



	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is lower than
the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is used for classification.



	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier
after the competences are estimated.



	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the base
classifiers for the random and diff selection schemes. If the difference is lower than the
threshold, their performance are considered equivalent.



	rngnumpy.random.RandomState instance

	Random number generator to assure reproducible results.
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estimate_competence(query)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/rank.py#L83-L118]

	estimate the rank of each base classifier ci considering the whole neighborhood.
The rank of the base classifier is estimated by the number of consecutive correctly classified samples
in the defined region of competence.

Returns an array containing the level of competence (rank) estimated
for each base classifier. The size of the array is equals to
the size of the pool of classifiers.


	Parameters

	
	queryarray of shape = [n_features]

	The test sample







	Returns

	
	competencesarray of shape = [n_classifiers]

	The competence level estimated for each base classifier














	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L128-L146]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods


	Parameters

	
	Xmatrix of shape = [n_samples, n_features] with the data.

	

	yclass labels of each sample in X.

	





	Returns

	
	self

	












	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L212-L267]

	Predict the class label for each sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class label for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/base.py#L269-L325]

	Estimates the posterior probabilities for sample in X.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes] with the

	

	probabilities estimates for each class in the classifier model.

	












	
score(X, y, sample_weight=None)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/../../sklearn/base.py#L324-L349]

	Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like, shape = (n_samples, n_features)

	Test samples.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)

	True labels for X.



	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.







	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.














	
select(competences)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/dcs/base.py#L108-L168]

	Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one
base classifier achieves the same competence level, the one with the lowest index is selected. This method
is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a predefined
threshold). If no base classifier is significantly better, the base classifier is selected randomly among the
member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
dcs technique becomes a des).


	Parameters

	
	competencesarray = [n_classifiers] containing the estimated competence level for the base classifiers

	





	Returns

	
	selected_clfindex of the selected base classifier(s)

	



















          

      

      

    

  

    
      
          
            
  
Static Selection

The deslib.static provides a set of static ensemble methods which are often used as a baseline to compare the
performance of dynamic selection algorithms.



	Oracle

	Single Best

	Static Selection









          

      

      

    

  

    
      
          
            
  
Oracle


	
class deslib.static.oracle.Oracle(pool_classifiers)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/oracle.py#L10-L80]

	Abstract method that always selects the base classifier that predicts the correct label if such classifier
exists. This method is often used to measure the upper-limit performance that can be achieved by a dynamic
classifier selection technique. It is used as a benchmark by several dynamic selection algorithms


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict”.









References

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.


	
predict(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/oracle.py#L34-L61]

	Prepare the labels using the Oracle model.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified



	yarray of shape = [n_samples]

	Class labels of each sample in X.







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class for each sample in X.














	
score(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/oracle.py#L63-L80]

	Prepare the labels using the Oracle model.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified



	yarray of shape = [n_samples]

	Class labels of each sample in X.







	Returns

	
	accuracyClassification accuracy of the Oracle model.

	



















          

      

      

    

  

    
      
          
            
  
Single Best


	
class deslib.static.single_best.SingleBest(pool_classifiers)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/single_best.py#L12-L110]

	Classification method that selects the classifier in the pool with highest
score to be used for classification. Usually, the performance of the single best classifier
is estimated based on the validation data.


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict”.









References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.


	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/single_best.py#L44-L65]

	Fit the model by selecting the base classifier with the highest accuracy in the dataset.
The single best classifier is kept in self.best_clf and its index is kept in self.best_clf_index.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified



	yarray of shape = [n_samples]

	Class labels of each sample in X.














	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/single_best.py#L67-L82]

	Predict the label of each sample in X and returns the predicted label.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class for each sample in X.














	
predict_proba(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/single_best.py#L84-L104]

	
	Estimates the posterior probabilities for each class for each sample in X. The returned probability

	estimates for all classes are ordered by the label of classes.






	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified







	Returns

	
	predicted_probaarray of shape = [n_samples, n_classes]

	Posterior probabilities estimates for each class.





















          

      

      

    

  

    
      
          
            
  
Static Selection


	
class deslib.static.static_selection.StaticSelection(pool_classifiers, pct_classifiers=0.5)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/static_selection.py#L14-L106]

	Ensemble model that selects N classifiers with the best performance in a dataset


	Parameters

	
	pool_classifierslist of classifiers

	The generated_pool of classifiers trained for the corresponding classification problem.
The classifiers should support methods “predict”.



	pct_classifiersfloat (Default = 0.5)

	percentage of base classifier that should be selected by the selection scheme.









References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.


	
fit(X, y)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/static_selection.py#L58-L81]

	
	Fit the static selection model by select an ensemble of classifier containing the base classifiers with

	highest accuracy in the given dataset.






	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified



	yarray of shape = [n_samples]

	Class labels of each sample in X.














	
predict(X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/static/static_selection.py#L83-L99]

	Predict the label of each sample in X and returns the predicted label.


	Parameters

	
	Xarray of shape = [n_samples, n_features]

	The data to be classified







	Returns

	
	predicted_labelsarray of shape = [n_samples]

	Predicted class for each sample in X.





















          

      

      

    

  

    
      
          
            
  
Util

The deslib.util This module includes various utilities. They are divided into three parts:

deslib.util.aggregation - Implementation of aggregation functions such as majority voting and averaging.
Such functions can be applied to any list of classifiers.

deslib.util.diversity - Implementation of different measures of diversity between classifiers.

deslib.util.prob_functions - Functions to estimate the competence of a base classifier based on the
probability estimates.



	Diversity

	Aggregation

	Probabilistic Functions









          

      

      

    

  

    
      
          
            
  
Diversity


	
deslib.util.diversity.Q_statistic(y, y_pred1, y_pred2)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/diversity.py#L133-L155]

	Calculates the Q-statistics diversity measure between a pair of classifiers. The Q value is in a range [-1, 1].
Classifiers that tend to classify the same object correctly will have positive values of Q, and
Q = 0 for two independent classifiers.


	Parameters

	
	yarray of shape = [n_samples]:

	class labels of each sample in X.



	y_pred1array of shape = [n_samples]:

	predicted class labels by the classifier 1 for each sample in X.



	y_pred2array of shape = [n_samples]:

	predicted class labels by the classifier 2 for each sample in X.







	Returns

	
	QThe q-statistic measure between two classifiers

	












	
deslib.util.diversity.double_fault(y, y_pred1, y_pred2)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/diversity.py#L77-L104]

	Calculates the double fault (df) measure. This measure represents the probability that both classifiers makes the
wrong prediction. A lower value of df means the base classifiers are less likely to make the same error.
This measure must be minimized to increase diversity.


	Parameters

	
	yarray of shape = [n_samples]:

	class labels of each sample in X.



	y_pred1array of shape = [n_samples]:

	predicted class labels by the classifier 1 for each sample in X.



	y_pred2array of shape = [n_samples]:

	predicted class labels by the classifier 2 for each sample in X.







	Returns

	
	dfThe double fault measure between two classifiers

	







References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network ensembles for image classification purposes.”
Image and Vision Computing 19.9 (2001): 699-707.






	
deslib.util.diversity.negative_double_fault(y, y_pred1, y_pred2)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/diversity.py#L107-L130]

	The negative of the double fault measure. This measure should be maximized for a higher diversity.


	Parameters

	
	yarray of shape = [n_samples]:

	class labels of each sample in X.



	y_pred1array of shape = [n_samples]:

	predicted class labels by the classifier 1 for each sample in X.



	y_pred2array of shape = [n_samples]:

	predicted class labels by the classifier 2 for each sample in X.







	Returns

	
	dfThe negative double fault measure between two classifiers

	







References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network ensembles for image classification purposes.”
Image and Vision Computing 19.9 (2001): 699-707.






	
deslib.util.diversity.ratio_errors(y, y_pred1, y_pred2)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/diversity.py#L158-L187]

	Calculates Ratio of errors diversity measure between a pair of classifiers. A higher value means that the base
classifiers are less likely to make the same errors. The ratio must be maximized for a higher diversity.


	Parameters

	
	yarray of shape = [n_samples]:

	class labels of each sample in X.



	y_pred1array of shape = [n_samples]:

	predicted class labels by the classifier 1 for each sample in X.



	y_pred2array of shape = [n_samples]:

	predicted class labels by the classifier 2 for each sample in X.







	Returns

	
	ratioThe q-statistic measure between two classifiers

	







References

Aksela, Matti. “Comparison of classifier selection methods for improving committee performance.”
Multiple Classifier Systems (2003): 159-159.









          

      

      

    

  

    
      
          
            
  
Aggregation


	
deslib.util.aggregation.average_rule(classifier_ensemble, X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L231-L248]

	Apply the average_rule rule to predict the label of each sample in X.


	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	containing the ensemble of classifiers used in the aggregation scheme.



	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	list_probaarray of shape = [n_classifiers, n_samples, n_classes]

	probabilities predicted by each base classifier in the ensemble for all samples in X.














	
deslib.util.aggregation.get_ensemble_votes(classifier_ensemble, X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L72-L97]

	Calculates the votes obtained by each based classifier in the ensemble for sample in X


	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	containing the ensemble of classifiers used in the aggregation scheme.



	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	votesarray of shape = [n_samples, n_classifiers]

	The votes obtained by each base classifier














	
deslib.util.aggregation.majority_voting(classifier_ensemble, X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L24-L43]

	Apply the majority voting rule to predict the label of each sample in X.


	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	containing the ensemble of classifiers used in the aggregation scheme.



	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelarray of shape = [n_samples]

	The label of each query sample predicted using the majority voting rule














	
deslib.util.aggregation.majority_voting_rule(votes)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L100-L113]

	Applies the majority voting rule to the estimated votes.


	Parameters

	
	votesarray of shape = [n_samples, n_classifiers],

	The votes obtained by each classifier for each sample.







	Returns

	
	predicted_labelarray of shape = [n_samples]

	The label of each query sample predicted using the majority voting rule














	
deslib.util.aggregation.predict_proba_ensemble(classifier_ensemble, X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L175-L194]

	Estimates the posterior probabilities of the give ensemble for each sample in X.


	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	containing the ensemble of classifiers used in the aggregation scheme.



	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	list_probaarray of shape = [n_classifiers, n_samples, n_classes]

	probabilities predicted by each base classifier in the ensemble for all samples in X.














	
deslib.util.aggregation.predict_proba_ensemble_weighted(classifier_ensemble, weights, X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L197-L228]

	Estimates the posterior probabilities for each sample in X.


	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	containing the ensemble of classifiers used to estimate the probabilities.



	weightsarray of shape = [n_samples, n_classifiers]

	Weights associated to each base classifier for each sample



	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	list_probaarray of shape = [n_classifiers, n_samples, n_classes]

	probabilities predicted by each base classifier in the ensemble for all samples in X.














	
deslib.util.aggregation.weighted_majority_voting(classifier_ensemble, weights, X)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L46-L69]

	Apply the weighted majority voting rule to predict the label of each sample in X. The size of the weights
vector should be equal to the size of the ensemble.


	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	containing the ensemble of classifiers used in the aggregation scheme.



	weightsarray of shape = [n_samples, n_classifiers]

	Weights associated to each base classifier for each sample



	Xarray of shape = [n_samples, n_features]

	The input data.







	Returns

	
	predicted_labelarray of shape = [n_samples]

	The label of each query sample predicted using the majority voting rule














	
deslib.util.aggregation.weighted_majority_voting_rule(votes, weights)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/aggregation.py#L116-L149]

	Applies the weighted majority voting rule based on the votes obtained by each base classifier and their
respective weights.


	Parameters

	
	votesarray of shape = [n_samples, n_classifiers],

	The votes obtained by each classifier for each sample.



	weightsarray of shape = [n_samples, n_classifiers]

	Weights associated to each base classifier for each sample







	Returns

	
	predicted_labelarray of shape = [n_samples]

	The label of each query sample predicted using the majority voting rule

















          

      

      

    

  

    
      
          
            
  
Probabilistic Functions


	
deslib.util.prob_functions.ccprmod(supports, idx_correct_label, B=20)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/prob_functions.py#L132-L204]

	Python implementation of the ccprmod.m (Classifier competence based on probabilistic modelling)
function. Matlab code is available at:
http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/28391/versions/6/previews/ccprmod.m/index.html


	Parameters

	
	supports: array of shape = [n_samples, n_classes]

	containing the supports obtained by the base classifier for each class.



	idx_correct_label: array of shape = [n_samples]

	containing the index of the correct class.



	Bint (Default = 20)

	number of points used in the calculation of the competence, higher values result
in a more accurate estimation.







	Returns

	
	C_srcarray of shape = [n_samples]

	representing the classifier competences at each data point









References

T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection,
Pattern Recognition 44 (2011) 2656–2668.






	
deslib.util.prob_functions.entropy_func(n_classes, supports, is_correct)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/prob_functions.py#L90-L129]

	Calculate the entropy in the support obtained by
the base classifier. The value of the source competence is inverse proportional to
the normalized entropy of its supports vector and the sign of competence is simply
determined  by the correct/incorrect classification.


	Parameters

	
	n_classesint

	The number of classes in the problem



	supports: array of shape = [n_samples, n_classes]

	containing the supports obtained by the base classifier for each class.



	is_correct: array of shape = [n_samples]

	array with 1 whether the base classifier predicted the correct label and -1 otherwise







	Returns

	
	C_srcarray of shape = [n_samples]

	representing the classifier competences at each data point









References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.






	
deslib.util.prob_functions.exponential_func(n_classes, support_correct)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/prob_functions.py#L27-L52]

	Calculate the exponential function based on the support obtained by
the base classifier for the correct class label.


	Parameters

	
	n_classesint

	The number of classes in the problem



	support_correct: array of shape = [n_samples]

	containing the supports obtained by the base classifier for the correct class







	Returns

	
	C_srcarray of shape = [n_samples]

	representing the classifier competences at each data point














	
deslib.util.prob_functions.log_func(n_classes, support_correct)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/prob_functions.py#L55-L87]

	Calculate the logarithm in the support obtained by
the base classifier.


	Parameters

	
	n_classesint

	The number of classes in the problem



	support_correct: array of shape = [n_samples]

	containing the supports obtained by the base classifier for the correct class







	Returns

	
	C_srcarray of shape = [n_samples]

	representing the classifier competences at each data point









References

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized reference classifier for dynamic
ensemble selection, in: International Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.






	
deslib.util.prob_functions.min_difference(supports, idx_correct_label)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/prob_functions.py#L207-L237]

	The minimum difference between the supports obtained for the correct class and the vector of class supports.
The value of the source competence is negative if the sample is misclassified and positive otherwise.


	Parameters

	
	supports: array of shape = [n_samples, n_classes]

	containing the supports obtained by the base classifier for each class



	idx_correct_label: array of shape = [n_samples]

	containing the index of the correct class







	Returns

	
	C_srcarray of shape = [n_samples]

	representing the classifier competences at each data point









References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.






	
deslib.util.prob_functions.softmax(w, theta=1.0)[source] [https://github.com/Menelau/DESlib/blob/v0.1/deslib/util/prob_functions.py#L240-L261]

	Takes an vector w of S N-element and returns a vectors where each column of the
vector sums to 1, with elements exponentially proportional to the
respective elements in N.


	Parameters

	
	warray of shape = [N,  M]

	

	thetafloat (default = 1.0)

	used as a multiplier  prior to exponentiation.







	Returns

	
	distarray of shape = [N, M]

	which the sum of each row sums to 1 and the elements are exponentially proportional to the
respective elements in N
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