

Welcome to DESlib documentation!

DESlib is an ensemble learning library focusing the implementation of the state-of-the-art techniques for dynamic classifier
and ensemble selection.

DESlib is a work in progress. Contributions are welcomed through its GitHub page: https://github.com/scikit-learn-contrib/DESlib.

Introduction

Dynamic Selection (DS) refers to techniques in which the base classifiers are selected
on the fly, according to each new sample to be classified. Only the most competent, or an ensemble containing the most competent classifiers is selected to predict
the label of a specific test sample. The rationale for such techniques is that not every classifier in
the pool is an expert in classifying all unknown samples; rather, each base classifier is an expert in
a different local region of the feature space.

DS is one of the most promising MCS approaches due to the fact that
more and more works are reporting the superior performance of such techniques over static combination methods. Such techniques
have achieved better classification performance especially when dealing with small-sized and imbalanced datasets. A
comprehensive review of dynamic selection can be found in the following papers 1 2

Philosophy

DESlib was developed with two objectives in mind: to make it easy to integrate Dynamic Selection algorithms to
machine learning projects, and to facilitate research on this topic, by providing implementations of the main
DES and DCS methods, as well as the commonly used baseline methods. Each algorithm implements the main methods
in the scikit-learn [http://scikit-learn.org/stable/] API scikit-learn: fit(X, y), predict(X), predict_proba(X)
and score(X, y).

The implementation of the DS methods is modular, following a taxonomy defined in 1.
This taxonomy considers the main characteristics of DS methods, that are centered in three components:

	the methodology used to define the local region, in which the competence level of the base classifiers are estimated (region of competence);

	the source of information used to estimate the competence level of the base classifiers.

	the selection approach to define the best classifier (for DCS) or the best set of classifiers (for DES).

This modular approach makes it easy for researchers to implement new DS methods, in many cases requiring only the
implementation of the method estimate_competence, that is, how the local competence of the base classifier is measured.

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

Example

Here we present an example of the KNORA-E techniques using a random forest to generate the pool of classifiers:

from sklearn.ensemble import RandomForestClassifier
from deslib.des.knora_e import KNORAE

Train a pool of 10 classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10)
pool_classifiers.fit(X_train, y_train)

Initialize the DES model
knorae = KNORAE(pool_classifiers)

Preprocess the Dynamic Selection dataset (DSEL)
knorae.fit(X_dsel, y_dsel)

Predict new examples:
knorae.predict(X_test)

The library accepts any list of classifiers (from scikit-learn) as input, including a list containing different classifier models (heterogeneous ensembles).
More examples to use the API can be found in the examples page.

Citation

If you use DESLib in a scientific paper, please consider citing the following paper:

Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin and George D. C. Cavalcanti DESlib: A Dynamic ensemble selection library in Python. arXiv preprint arXiv:1802.04967 (2018).

@article{JMLR:v21:18-144,
 author = {Rafael M. O. Cruz and Luiz G. Hafemann and Robert Sabourin and George D. C. Cavalcanti},
 title = {DESlib: A Dynamic ensemble selection library in Python},
 journal = {Journal of Machine Learning Research},
 year = {2020},
 volume = {21},
 number = {8},
 pages = {1-5},
 url = {http://jmlr.org/papers/v21/18-144.html}
}

References

	1(1,2)

	: R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

	2

	: A. S. Britto, R. Sabourin, L. E. S. de Oliveira, Dynamic selection of classifiers - A comprehensive review, Pattern Recognition 47 (11) (2014) 3665–3680.

User guide

This user guide explains how to install DESlib, how to contribute to the library and
presents a step-by-step tutorial to fit and predict new instances using several dynamic selection techniques.

	Installation
	Optional dependencies

	Development
	Contributing to DESlib

	Reporting Bugs and requesting features

	Documentation

	Contributing with code

	Tutorial
	Running Dynamic selection with Bagging

	Code analysis:

	Known Issues

	Releasing a new version
	Step-by-step process

Installation

The library can be installed using pip:

Stable version:

pip install deslib

Latest version (under development):

pip install git+https://github.com/scikit-learn-contrib/DESlib

DESlib is tested to work with Python 3.5, 3.6 and 3.7. The dependency requirements are:

	scipy(>=0.13.3)

	numpy(>=1.10.4)

	scikit-learn(>=0.19.0)

These dependencies are automatically installed using the pip commands above.

Optional dependencies

To use Faiss (Fair AI Similarity Search), a fast implementation of KNN that can use GPUs, follow the instructions below:
https://github.com/facebookresearch/faiss/blob/master/INSTALL.md

Note that Faiss is only available on Linux and MacOS.

Development

DESlib was started by Rafael M. O. Cruz as a way to facilitate research in this topic by providing other researchers
a toolbox with everything that is required to easily develop and compare different dynamic ensemble techniques.

The library is a work in progress. As an open-source project, any type of contribution is welcomed and encouraged!

Contributing to DESlib

You can contribute to the project in several ways:

	Reporting bugs

	Requesting features

	Improving the documentation

	Adding examples to use the library

	Implementing new features and fixing bugs

Reporting Bugs and requesting features

We use Github issues to track all bugs and feature requests; feel free to
open an issue if you have found a bug or wish to see a new feature implemented.
Before opening a new issue, please check if the issue is not being currently addressed:
[Issues](https://github.com/scikit-learn-contrib/DESlib/issues)

For reporting bugs:

	Include information of your working environment. This information
can be found by running the following code snippet:

import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import scipy; print("SciPy", scipy.__version__)
import sklearn; print("Scikit-Learn", sklearn.__version__)

	Include a [reproducible](https://stackoverflow.com/help/mcve) code snippet
or link to a [gist](https://gist.github.com). If an exception is raised,
please provide the traceback.

Documentation

We are glad to accept any sort of documentation: function docstrings,
reStructuredText documents (like this one), tutorials, etc.
reStructuredText documents live in the source code repository under the
doc/ directory.

You can edit the documentation using any text editor and then generate
the HTML output by typing make html from the doc/ directory.
Alternatively, make can be used to quickly generate the
documentation without the example gallery. The resulting HTML files will
be placed in _build/html/ and are viewable in a web browser. See the
README file in the doc/ directory for more information.

For building the documentation, you will need to install sphinx and sphinx_rtd_theme. This
can be easily done by installing the requirements for development using the following command:

pip install -r requirements-dev.txt

Contributing with code

The preferred way to contribute is to fork the main repository to your account:

	Fork the [project repository](https://github.com/scikit-learn-contrib/DESlib):
click on the ‘Fork’ button near the top of the page. This creates
a copy of the code under your account on the GitHub server.

	Clone this copy to your local disk:

git clone git@github.com:YourLogin/DESlib.git
cd DESlib

	Install all requirements for development:

pip install -r requirements-dev.txt
pip install --editable .

	Create a branch to hold your changes:

git checkout -b branch_name

Where branch_name is the new feature or bug to be fixed. Do not work directly on the master branch.

	Work on this copy on your computer using Git to do the version
control. To record your changes in Git, then push them to GitHub with:

git push -u origin branch_name

It is important to assert your code is well covered by test routines (coverage of at least 90%), well documented and
follows PEP8 guidelines.

	Create a ‘Pull request’ to send your changes for review.

If your pull request addresses an issue, please use the title to describe
the issue and mention the issue number in the pull request description to
ensure a link is created to the original issue.

Tutorial

This tutorial will walk you through generating a pool of classifiers and applying several dynamic selection techniques
for the classification of unknown samples. The tutorial assumes that you are already familiar with the Python language [https://docs.python.org/3.5/tutorial/]
and the scikit-learn [http://scikit-learn.org/stable/tutorial/index.html] library. Users not familiar with either Python and scikit-learn can start by checking out their tutorials.

Running Dynamic selection with Bagging

In this first tutorial, we do a step-by-step run of the example_bagging.py, that is included in the examples part of the DESlib.
This example uses the Wisconsin breast cancer dataset available on sklearn.datasets package.

The first step is to run the example to check if everything is working as intended:

cd examples
python example_bagging.py

This script run six different dynamic selection models: Three DCS (OLA, A-Priori, MCB) and four DES (KNORA-Union,
KNORA-Eliminate, DES-P and META-DES)

The example outputs the classification accuracy of each dataset:

Evaluating DS techniques:
Classification accuracy KNORA-Union: 0.973404255319
Classification accuracy KNORA-Eliminate: 0.968085106383
Classification accuracy DESP: 0.973404255319
Classification accuracy OLA: 0.968085106383
Classification accuracy A priori: 0.973404255319
Classification accuracy MCB: 0.968085106383
Classification accuracy META-DES: 0.973404255319

Code analysis:

The code starts by importing the corresponding DCS and DES algorithms that are tested as well as the other required
libraries:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import BaggingClassifier

#importing DCS techniques from DESlib
from deslib.dcs.ola import OLA
from deslib.dcs.a_priori import APriori
from deslib.dcs.mcb import MCB

#import DES techniques from DESlib
from deslib.des.des_p import DESP
from deslib.des.knora_u import KNORAU
from deslib.des.knora_e import KNORAE
from deslib.des.meta_des import METADES

As DESlib is built on top of scikit-learn [http://scikit-learn.org/stable/tutorial/index.html], code will usually required the import of routines from it.

Preparing the dataset:

The next step is loading the data and dividing it into three partitions: Training, validation and test. In the dynamic
selection literature 1 the validation set is usually called the dynamic selection dataset (DSEL), since
this partition is used by the dynamic selection techniques in order to select the base classifiers, so in this
library we use the same terminology. The training set (X_train, y_train) is used to fit the pool of classifiers,
the validation (X_DSEL, y_DSEL) set is used to fit the dynamic selection models. The performance of the system
is then evaluated on the test set (X_test, y_test).

data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

Scale the variables to have 0 mean and unit variance
scalar = StandardScaler()
X_train = scalar.fit_transform(X_train)
X_test = scalar.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train, test_size=0.5)

Another important aspect is to normalize the data so that it has
zero mean and unit variance, which is a common requirement for many machine learning algorithms.
This step can be easily done using the StandardScaler class from scikit-learn [http://scikit-learn.org/stable/tutorial/index.html]. Note that the StandardScaler transform
should be fitted using the training and DSEL data only. Then, it can be applied for the test data.

An important point here is that in case of small datasets or when the base classifier models in the pool
are weak estimators such as Decision Stumps or Perceptrons, an overlap between the training data and DSEL
may be beneficial for achieving better performance.

Training a pool of classifiers:

The next step is to generate a pool of classifiers. This list can be either
homogeneous (i.e., all base classifiers are of the same type) or heterogeneous (base classifiers of different types).
The library supports any type of base classifiers that is compatible with the scikit-learn library.

In this example, we generate a pool composed of 10 Perceptron classifiers
using the Bagging technique. It is important to mention that some DS techniques require that the base classifiers are capable of
estimating probabilities (i.e., implements the predict_proba function).

For the Perceptron model, this can be achieved
by calibrating the outputs of the base classifiers using the CalibratedClassifierCV class from scikit-learn.

model = CalibratedClassifierCV(Perceptron(max_iter=10))

Train a pool of 10 classifiers
pool_classifiers = BaggingClassifier(model, n_estimators=10)
pool_classifiers.fit(X_train, y_train)

Building the DS models

Three DCS and four DES techniques are considered in this example:

	Overal Local Accuracy (OLA)

	Multiple-Classifier Behavior (MCB)

	A Priori selection

	K-Nearest Oracles-Union (KNU)

	K-Nearest Oracles-Eliminate (KNE)

	META-DES

NEW: Since version 0.3, DESlib does not require a trained pool of classifiers for instantiating its estimators. All estimator
can now be instantiated without specifying a pool of classifiers:

DCS techniques
ola = OLA()
mcb = MCB()
apriori = APriori()

DES techniques
knorau = KNORAU()
kne = KNORAE()
desp = DESP()
meta = METADES()

When the pool of classifiers is not specified, a standard BaggingClassifier from sklearn is used, which generates
a pool composed of 10 decision trees. The parameter DSEL_perc controls the percentage of the input data that is used for fitting
DSEL. The remaining data will be used to fit the pool of classifiers. Note that this parameter is only taken into account if
the pool is either equals to None (when it was not informed) or still unfitted (when the base classifiers were not fitted)

However, since we already trained a pool of classifiers in the previous step we will continue this tutorial by instantiating the dynamic selection methods with an already fitted pool.
For more information on using DESlib estimators without specifying a trained pool of classifiers
see the examples page.

DCS techniques
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers)
apriori = APriori(pool_classifiers)

DES techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
meta = METADES(pool_classifiers)

Fitting the DS techniques:

The next step is to fit the DS model. We call the function fit to prepare the DS techniques for the
classification of new data by pre-processing the information required to apply the DS techniques, such as,
fitting the algorithm used to estimate the region of competence (k-NN, k-Means) and calculating the source of competence
of the base classifiers for each sample in the dynamic selection dataset.

knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
apriori.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Note that if the pool of classifiers is still unfitted, this step will also fit the base classifiers in the pool.

Estimating classification accuracy:

Estimating the classification accuracy of each method is very easy. Each DS technique implements the function score
from scikit-learn in order to estimate the classification accuracy.

print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy KNORA-Union: ', knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ', kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy META-DES: ', apriori.score(X_test, y_test))

However, you may need to calculate the predictions of the model or the estimation of probabilities instead of only computing the accuracy.
Class labels and posterior probabilities can be easily calculated using the predict and predict_proba methods:

metades.predict(X_test)
metades.predict_proba(X_test)

Changing parameters

Changing the hyper-parameters is very easy. We just need to pass its value when instantiating a new method. For example,
we can change the size of the neighborhood used to estimate the competence level by setting the k value.

DES techniques
knorau = KNORAU(pool_classifiers, k=5)
kne = KNORAE(pool_classifiers, k=5)

Also, we can change the mode DES algorithm works (dynamic selection, dynamic weighting or hybrid) by setting its mode:
.. code-block:: python

meta = METADES(pool_classifiers, Hc=0.8, k=5, mode=’hybrid’)

In this code block, we change the size of the neighborhood (k=5), the value of the sample selection mechanism (Hc=0.8) and
also, state that the META-DES algorithm should work in a hybrid dynamic selection with and weighting mode.
The library accepts the change of several hyper-parameters. A list containing each one for all technique available
as well as its impact in the algorithm is presented in the API Reference.

Applying the Dynamic Frienemy Pruning (DFP)

The library also implements the Dynamic Frienemy Pruning (DFP) proposed in 2. So any dynamic selection technique can be
applied using the FIRE (Frienemy Indecision Region Dynamic Ensemble Selection) framework. That is easily done by setting the
DFP to true when initializing a DS technique. In this example, we show how to start the FIRE-KNORA-U, FIRE-KNORA-E and FIRE-MCB techniques.

fire_knorau = KNORAU(pool_classifiers, DFP=True)
fire_kne = KNORAE(pool_classifiers, DFP=True)
fire_mcb = MCB(pool_classifiers, DFP=True)

We can also set the size of the neighborhood that is used to decide whether the query sample is located in a safe region or
in an indecision region (safe_k):

fire_knorau = KNORAU(pool_classifiers, DFP=True, safe_k=3)
fire_kne = KNORAE(pool_classifiers, DFP=True, safe_k=5)
fire_mcb = MCB(pool_classifiers, DFP=True, safe_k=7)

So, the fire_knorau will use a neighborhood composed of 3 samples, fire_knorae of 5 and fire_mcb of 7 in order to compute whether a given sample
is located in a indecision or safe region.

More tutorials on how to use different aspects of the library can be found in examples page

References

	1

	: R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

	2

	: Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., Online Pruning of Base Classifiers for Dynamic Ensemble Selection, Pattern Recognition, vol. 72, December 2017, pp 44-58.

Known Issues

The estimators in this library are not compatible with scikit-learn’s GridSearch, and other CV methods. That is, the following is not supported:

from deslib.des.knora_e import KNORAE
from sklearn.model_selection import GridSearchCV

(...) initialize a pool of classifiers
kne = KNORAE(pool_classifiers)

Do a grid search on KNORAE's "k" parameter
params = {'k': [1, 3, 5, 7]}

grid = GridSearchCV(kne, params)
grid.fit(X_dsel, y_dsel) # Raises an error

This is due to a limitation of a scikit-learn method (sklearn.base.clone), under discussion in this issue [https://github.com/scikit-learn/scikit-learn/issues/8370]

Releasing a new version

Publishing new version involves:

	Updating the version numbers and creating a new tag in git (which also updates the “stable” version of the documentation)

	Creating the distribution (.tar.gz and wheel files), and uploading them to pypi

	Some important things to have in mind:

	
	Read the “Packaging and Distributing Projects” guide: https://packaging.python.org/tutorials/distributing-packages/

	The version numbers (in setup.py and __init__.py) are used as metadata for pypi and for the readthedocs documentation - pay attention to them or some things can break. In general, you should be working on a version such as “0.2.dev”. You then rename it to “0.2” and create a tag “v0.2”. After you finish everything, you update the version to “0.3.dev” to indicate that new developments are being made for the next version.

Step-by-step process

	Create an account in PyPi production: https://pypi.org/ and test: https://test.pypi.org/

	Make sure you have twine installed:

pip install twine

	Update version on setup.py (e.g. “0.1”)

	Update version on deslib/__init__.py

	Create tag: git tag <version> (example: “git tag ‘v0.1’”)

	Push the tag git push origin <version>

	Create the source and wheels distributions

python setup.py sdist # source distribution
python setup.py bdist_wheel # wheel distribution for current python version

	Upload to test pypi and check

	uploading the package:

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

	Note: if you do this multiple times (e.g. to fix an issue), you will need to rename the files under the “dist” folder: a filename can only be submitted once to pypi. You may also need to manually delete the “source” version of the distribution, since there can only be one source file per version of the software

	Test an installation from the testing pypi environment.

conda create -y -n testdes python=3
source activate testdes
pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple deslib
conda remove -y --name testdes --all #remove temporary environment

	Upload to production pypi

twine upload dist/*

	Mark the new stable version to be built on readthedocs:

	Go to https://readthedocs.org/projects/deslib/versions/, find the new tag and click “Edit”. Mark the “active” checkbox and save.

	Update version on setup.py and __init.py__ to mention the new version in development (e.g. “0.2.dev”)

Note #1: Read the docs is automatically updated:

	When a new commit is done in master (this updates the “master” version)

	When a new tag is pushed to github (this updates the “stable” version) -> This seems to not aways work - it is better to check

Note #2: The documentation automatically links to source files for the methods/classes. This only works if the tag is pushed to github, and matches the __version__ variable in __init.py__. Example:
__version__ = “0.1” and the tag being:
git tag “v0.1”

API Reference

This is the full API documentation of the DESlib. Currently the library is divided into four modules:

Dynamic Classifier Selection (DCS)

This module contains the implementation of techniques in which only the base
classifier that attained the highest competence level is selected for the classification of the query.

The deslib.dcs provides a set of key dynamic classifier selection
algorithms (DCS).

	A posteriori

	A Priori

	Local Class Accuracy (LCA)

	Multiple Classifier Behaviour (MCB)

	Modified Local Accuracy (MLA)

	Overall Local Accuracy (OLA)

	Modified Rank

Dynamic Ensemble Selection (DES)

Dynamic ensemble selection strategies refer to techniques that select an ensemble of classifier rather than a single one.
All base classifiers that attain a minimum competence level are selected to compose the ensemble of classifiers.

The deslib.des provides a set of key dynamic ensemble selection
algorithms (DES).

	META-DES

	DES Clustering

	Dynamic Ensemble Selection performance (DES-P)

	DES-KNN

	k-Nearest Output Profiles (KNOP)

	k-Nearest Oracle-Eliminate (KNORA-E)

	k-Nearest Oracle Union (KNORA-U)

	DES Multiclass Imbalance (DES-MI)

	Probabilistic
	Randomized Reference Classifier (RRC)

	DES-Kullback Leibler

	DES-Minimum Difference

	DES-Exponential

	DES-Logarithmic

Static ensembles

This module provides the implementation of static ensemble techniques that are usually used as a baseline for the
comparison of DS methods: Single Best (SB), Static Selection (SS), Stacked classifier and Oracle.

The deslib.static provides a set of static ensemble methods which are
often used as a baseline to compare the performance of dynamic selection
algorithms.

	Oracle

	Single Best

	Static Selection

	Stacked Classifier

Utils

Utility functions for ensemble methods such as diversity and aggregation methods.

The deslib.util This module includes various utilities. They are divided
into four parts:

deslib.util.aggregation - Implementation of aggregation functions such as
majority voting and averaging. Such functions can be applied to any list of
classifiers.

deslib.util.diversity - Implementation of different measures of diversity
between classifiers.

deslib.util.prob_functions - Functions to estimate the competence of a base
classifier based on the
probability estimates.

deslib.util.instance_hardness - Functions to measure the hardness level of a
given instance

deslib.util.faiss_knn_wrapper - Wrapper for Facebook AI fast similarity search
on GPU

deslib.util.datasets - Provides methods to generate synthetic data.

deslib.util.knne - Implementation of the K-Nearest Neighbors Equality
technique

	Diversity

	Aggregation

	Probabilistic Functions

	Instance Hardness

	Frienemy Pruning
	References

	KNN-Equality

	FAISS Wrapper

	Datasets

A posteriori

	
class deslib.dcs.a_posteriori.APosteriori(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='diff', diff_thresh=0.1, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/a_posteriori.py#L12-L243]

	A Posteriori Dynamic classifier selection.

The A Posteriori method uses the probability of correct classification of a
given base classifier \(c_{i}\) for each neighbor \(x_{k}\) with
respect to a single class. Consider a classifier \(c_{i}\) that assigns
a test sample to class \(w_{l}\). Then, only the samples belonging to
class \(w_{l}\) are taken into account during the competence level
estimates. Base classifiers with a higher probability of correct
classification have a higher competence level. Moreover, the method also
weights the influence of each neighbor \(x_{k}\) according to its
Euclidean distance to the query sample. The closest neighbors have a higher
influence on the competence level estimate. In cases where no sample in the
region of competence belongs to the predicted class, \(w_{l}\), the
competence level estimate of the base classifier is equal to zero.

A single classifier is selected only if its competence level is
significantly higher than that of the other base classifiers in the pool
(higher than a pre-defined threshold). Otherwise, all classifiers in the
pool are combined using the majority voting rule. The selection methodology
can be modified by modifying the hyper-parameter selection_method.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict” and “predict_proba”. If None, then the pool of classifiers is
a bagging classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection
10th Int. Conf. on Image Anal. and Proc., Venice, Italy (1999), 659-664.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic
classifier selection to dynamic ensemble selection.”
Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/a_posteriori.py#L159-L243]

	Estimate the competence of each base classifier \(c_{i}\) for
the classification of the query sample using the A Posteriori method.

The competence level is estimated based on the probability of correct
classification of the base classifier \(c_{i}\), for each neighbor
\(x_{k}\) belonging to a specific class \(w_{l}\).
In this case, \(w_{l}\) is the class predicted by the base
classifier \(c_{i}\), for the query sample. This method also
weights the influence of each training sample according to its
Euclidean distance to the query instance. The closest samples have a
higher influence in the computation of the competence level. The
competence level estimate is represented by the following equation:

\[\delta_{i,j} = \frac{\sum_{\mathbf{x}_{k} \in
\omega_{l}}P(\omega_{l} \mid \mathbf{x}_{k}, c_{i})W_{k}}
{\sum_{k = 1}^{K}P(\omega_{l} \mid \mathbf{x}_{k}, c_{i})W_{k}}\]

where \(\delta_{i,j}\) represents the competence level of
\(c_{i}\) for the classification of query.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/a_posteriori.py#L136-L157]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
method.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

A Priori

	
class deslib.dcs.a_priori.APriori(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='diff', diff_thresh=0.1, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/a_priori.py#L12-L210]

	A Priori dynamic classifier selection.

The A Priori method uses the probability of correct classification of a
given base classifier \(c_{i}\) for each neighbor \(x_{k}\) for the
competence level estimation. Base classifiers with a higher probability of
correct classification have a higher competence level. Moreover, the method
also weights the influence of each neighbor \(x_{k}\) according to its
Euclidean distance to the query sample. The closest neighbors have a higher
influence on the competence level estimate.

A single classifier is selected only if its competence level is
significantly higher than that of the other base classifiers in the pool
(higher than a pre-defined threshold). Otherwise, all classifiers i the
pool are combined using the majority voting rule.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict” and “predict_proba”. If None, then the pool of classifiers is
a bagging classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection
10th Int. Conf. on Image Anal. and Proc., Venice, Italy (1999), 659-664.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic
classifier selection to dynamic ensemble selection.”
Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/a_priori.py#L153-L210]

	estimate the competence of each base classifier \(c_{i}\) for
the classification of the query sample using the A Priori rule:

The competence level is estimated based on the probability of correct
classification of the base classifier \(c_{i}\), considering all
samples in the region of competence. This method also weights the
influence of each training sample according to its Euclidean distance
to the query instance. The closest samples have a higher influence in
the computation of the competence level. The competence level estimate
is represented by the following equation:

\[\delta_{i,j} = \frac{\sum_{k = 1}^{K}P(\omega_{l} \mid
\mathbf{x}_{k} \in \omega_{l},
 c_{i})W_{k}}{\sum_{k = 1}^{K}W_{k}}\]

where \(\delta_{i,j}\) represents the competence level of
\(c_{i}\) for the classification of query.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/a_priori.py#L130-L151]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
method.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

Local Class Accuracy (LCA)

	
class deslib.dcs.lca.LCA(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, random_state=None, knn_classifier='knn', DSEL_perc=0.5, knne=False, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/lca.py#L12-L188]

	Local Class Accuracy (LCA).

Evaluates the competence level of each individual classifiers and
select the most competent one to predict the label of each test sample.
The competence of each base classifier is calculated based on its local
accuracy with respect to some output class. Consider a classifier
\(c_{i}\) that assigns a test sample to class \(w_{l}\). The
competence level of \(c_{i}\) is estimated by the percentage of the
local training samples assigned to class \(w_{l}\) that it predicts
the correct class label.

The LCA method selects the base classifier presenting the highest
competence level. In a case where more than one base classifier achieves
the same competence level, the one that was evaluated first is selected.
The selection methodology can be modified by changing the hyper-parameter
selection_method.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ : will use KNeighborsClassifier from sklearn

KNNE.

	‘faiss’ : will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None : will use sklearn KNeighborsClassifier.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of
multiple classifiers using local accuracy estimates.” IEEE transactions on
pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/lca.py#L128-L188]

	estimate the competence of each base classifier \(c_{i}\) for
the classification of the query sample using the local class accuracy
method.

In this algorithm the k-Nearest Neighbors of the test sample are
estimated. Then, the local accuracy of the base classifiers is
estimated by its classification accuracy taking into account only the
samples from the class \(w_{l}\) in this neighborhood. In this
case, \(w_{l}\) is the class predicted by the base classifier
\(c_{i}\), for the query sample. The competence level estimate is
represented by the following equation:

\[\delta_{i,j} = \frac{\sum_{\mathbf{x}_{k} \in
\omega_{l}}P(\omega_{l} \mid \mathbf{x}_{k},
c_{i})}{\sum_{k = 1}^{K}P(\omega_{l} \mid
\mathbf{x}_{k}, c_{i})}\]

where \(\delta_{i,j}\) represents the competence level of
\(c_{i}\) for the classification of query.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

Multiple Classifier Behaviour (MCB)

	
class deslib.dcs.mcb.MCB(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, similarity_threshold=0.7, selection_method='diff', diff_thresh=0.1, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/mcb.py#L12-L229]

	Multiple Classifier Behaviour (MCB).

The MCB method evaluates the competence level of each individual
classifiers taking into account the local accuracy of the base classifier
in the region of competence. The region of competence is defined using the
k-NN and behavioral knowledge space (BKS) method. First the k-nearest
neighbors of the test sample are computed. Then, the set containing the
k-nearest neighbors is filtered based on the similarity of the query sample
and its neighbors using the decision space (BKS representation).

A single classifier \(c_{i}\) is selected only if its competence level
is significantly higher than that of the other base classifiers in the pool
(higher than a pre-defined threshold). Otherwise, all classifiers in the
pool are combined using the majority voting rule. The selection methodology
can be modified by changing the hyper-parameter selection_method.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Giacinto, Giorgio, and Fabio Roli. “Dynamic classifier selection based on
multiple classifier behaviour.”
Pattern Recognition 34.9 (2001): 1879-1881.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

Huang, Yea S., and Ching Y. Suen. “A method of combining multiple experts
for the recognition of unconstrained handwritten numerals.” IEEE
Transactions on Pattern Analysis and Machine Intelligence
17.1 (1995): 90-94.

Huang, Yea S., and Ching Y. Suen. “The behavior-knowledge space method for
combination of multiple classifiers.” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 1993.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/mcb.py#L140-L215]

	estimate the competence of each base classifier \(c_{i}\) for
the classification of the query sample using the Multiple Classifier
Behaviour criterion.

The region of competence in this method is estimated taking into
account the feature space and the decision space (using the behaviour
knowledge space method [4]). First, the k-Nearest Neighbors of the
query sample are defined in the feature space to compose the region of
competence. Then, the similarity in the BKS space between the query and
the instances in the region of competence are estimated using the
following equations:

\[S(\tilde{\mathbf{x}}_{j},\tilde{\mathbf{x}}_{k}) =
\frac{1}{M}
\sum\limits_{i = 1}^{M}T(\mathbf{x}_{j},\mathbf{x}_{k})\]

\[\begin{split}T(\mathbf{x}_{j},\mathbf{x}_{k}) =
\left\{\begin{matrix} 1 & \text{if} &
c_{i}(\mathbf{x}_{j}) = c_{i}(\mathbf{x}_{k}),\\
0 & \text{if} & c_{i}(\mathbf{x}_{j}) \neq
c_{i}(\mathbf{x}_{k}). \end{matrix}\right.\end{split}\]

Where \(S(\tilde{\mathbf{x}}_{j},\tilde{\mathbf{x}}_{k})\)
denotes the similarity between two samples based on the behaviour
knowledge space method (BKS). Instances with similarity lower than a
predefined threshold are removed from the region of competence. The
competence level of the base classifiers are estimated as their
classification accuracy in the final region of competence.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

Modified Local Accuracy (MLA)

	
class deslib.dcs.mla.MLA(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/mla.py#L12-L205]

	Modified Local Accuracy (MLA).

Similar to the LCA technique. The only difference is that the output of
each base classifier is weighted by the distance between the test sample
and each pattern in the region of competence for the estimation of the
classifiers competences. Only the classifier that achieved the highest
competence level is select to predict the label of the test sample x.

The MLA method selects the base classifier presenting the highest
competence level. In a case where more than one base classifier achieves
the same competence level, the one that was evaluated first is selected.
The selection methodology can be modified by changing the hyper-parameter
selection_method.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of
multiple classifiers using local accuracy estimates.” IEEE transactions on
pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/mla.py#L126-L205]

	estimate the competence of each base classifier \(c_{i}\) for
the classification of the query sample using the Modified Local
Accuracy (MLA) method.

The competence level of the base classifiers is estimated by its
classification accuracy taking into account only the samples belonging
to a given class \(w_{l}\).In this case, \(w_{l}\) is the class
predicted by the base classifier \(c_{i}\), for the query sample.
This method also weights the influence of each training sample
according to its Euclidean distance to the query instance. The closest
samples have a higher influence in the computation of the competence
level. The competence level estimate is represented by the following
equation:

\[\delta_{i,j} = \sum_{k = 1}^{K}P(\omega_{l} \mid
\mathbf{x}_{k} \in \omega_{l}, c_{i})W_{k}\]

where \(\delta_{i,j}\) represents the competence level of
\(c_{i}\) for the classification of query.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

Overall Local Accuracy (OLA)

	
class deslib.dcs.ola.OLA(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/ola.py#L12-L163]

	Overall Classifier Accuracy (OLA).

The OLA method evaluates the competence level of each individual
classifiers and select the most competent one to predict the label of each
test sample x. The competence of each base classifier is calculated as its
classification accuracy in the neighborhood of x (region of competence).

The OLA method selects the base classifier presenting the highest
competence level. In a case where more than one base classifier achieves
the same competence level, the one that was evaluated first is selected.
The selection methodology can be modified by changing the hyper-parameter
selection_method.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of
multiple classifiers using local accuracy estimates.” IEEE transactions on
pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/ola.py#L125-L163]

	estimate the competence level of each base classifier \(c_{i}\)
for the classification of the query sample.

The competences for each base classifier \(c_{i}\) is estimated by
its classification accuracy considering the k-Nearest Neighbors (region
of competence). The competence level estimate is represented by the
following equation:

\[\delta_{i,j} = \frac{1}{K}\sum_{k = 1}^{K}
P(\omega_{l} \mid \mathbf{x}_{k} \in \omega_{l}, c_{i})\]

where \(\delta_{i,j}\) represents the competence level of
\(c_{i}\) for the classification of query.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

Modified Rank

	
class deslib.dcs.rank.Rank(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, selection_method='best', diff_thresh=0.1, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/rank.py#L12-L175]

	Modified Classifier Rank.

The modified classifier rank method evaluates the competence level of each
individual classifiers and select the most competent one to predict the
label of each test sample \(x\). The competence of each base classifier
is calculated as the number of correctly classified samples, starting from
the closest neighbor of \(x\). The classifier with the highest number
of correctly classified samples is considered the most competent.

The Rank method selects the base classifier presenting the highest
competence level. In a case where more than one base classifier achieves
the same competence level, the one that was evaluated first is selected.
The selection methodology can be modified by changing the hyper-parameter
selection_method.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	selection_methodString (Default = “best”)

	Determines which method is used to select the base classifier after
the competences are estimated.

	diff_threshfloat (Default = 0.1)

	Threshold to measure the difference between the competence level of the
base classifiers for the random and diff selection schemes. If the
difference is lower than the threshold, their performance are
considered equivalent.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of
multiple classifiers using local accuracy estimates.” IEEE transactions on
pattern analysis and machine intelligence 19.4 (1997): 405-410.

M. Sabourin, A. Mitiche, D. Thomas, G. Nagy, Classifier combination for
handprinted digit recognition, International Conference on Document
Analysis and Recognition (1993) 163–166.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/rank.py#L132-L175]

	estimate the competence level of each base classifier \(c_{i}\)
for the classification of the query sample using the modified ranking
scheme. The rank of the base classifier is estimated by the number of
consecutive correctly classified samples in the defined region of
competence.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for the test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/dcs/base.py#L65-L154]

	Select the most competent classifier for the classification of the
query sample given the competence level estimates. Four selection
schemes are available.

Best : The base classifier with the highest competence level is
selected. In cases where more than one base classifier achieves the
same competence level, the one with the lowest index is selected. This
method is the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the
others in the pool (when the difference between its competence level
and the competence level of the other base classifiers is higher than a
predefined threshold). If no base classifier is significantly better,
the base classifier is selected randomly among the member with
equivalent competence level.

Random : Selects a random base classifier among all base classifiers
that achieved the same competence level.

ALL : all base classifiers with the max competence level estimates are
selected (note that in this case the
DCS technique becomes a DES technique).

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape [n_samples]

	Indices of the selected base classifier for each sample. If the
selection_method is set to ‘all’, a boolean matrix is returned,
containing True for the selected base classifiers, otherwise false.

META-DES

	
class deslib.des.meta_des.METADES(pool_classifiers=None, meta_classifier=None, k=7, Kp=5, Hc=1.0, selection_threshold=0.5, mode='selection', DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/meta_des.py#L14-L546]

	Meta learning for dynamic ensemble selection (META-DES).

The META-DES framework is based on the assumption that the dynamic ensemble
selection problem can be considered as a meta-problem. This meta-problem
uses different criteria regarding the behavior of a base classifier
\(c_{i}\), in order to decide whether it is competent enough to
classify a given test sample.

The framework performs a meta-training stage, in which, the meta-features
are extracted from each instance belonging to the training and the dynamic
selection dataset (DSEL). Then, the extracted meta-features are used
to train the meta-classifier \(\lambda\). The meta-classifier is
trained to predict whether or not a base classifier \(c_{i}\) is
competent enough to classify a given input sample.

When an unknown sample is presented to the system, the meta-features for
each base classifier \(c_{i}\) in relation to the input sample are
calculated and presented to the meta-classifier. The meta-classifier
estimates the competence level of the base classifier \(c_{i}\) for
the classification of the query sample. Base classifiers with competence
level higher than a pre-defined threshold are selected. If no base
classifier is selected, the whole pool is used for classification.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	meta_classifiersklearn.estimator (Default = None)

	Classifier model used for the meta-classifier. If None,
a Multinomial naive Bayes classifier is used.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	Kpint (Default = 5)

	Number of output profiles used to estimate the competence of the
base classifiers.

	Hcfloat (Default = 1.0)

	Sample selection threshold.

	selection_thresholdfloat(Default = 0.5)

	Threshold used to select the base classifier. Only the base classifiers
with competence level higher than the selection_threshold are selected
to compose the ensemble.

	modeString (Default = “selection”)

	Determines the mode of META-des that is used
(selection, weighting or hybrid).

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Cruz, R.M., Sabourin, R., Cavalcanti, G.D. and Ren, T.I., 2015. META-DES:
A dynamic ensemble selection framework using meta-learning.
Pattern Recognition, 48(5), pp.1925-1935.

Cruz, R.M., Sabourin, R. and Cavalcanti, G.D., 2015, July. META-des. H:
a dynamic ensemble selection technique using meta-learning and a dynamic
weighting approach. In Neural Networks (IJCNN), 2015 International Joint
Conference on (pp. 1-8).

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence_from_proba(query, neighbors, probabilities, distances=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/meta_des.py#L439-L490]

	Estimate the competence of each base classifier \(c_i\)
the classification of the query sample. This method received an array
with the pre-calculated probability estimates for each query.

First, the meta-features of each base classifier \(c_i\) for the
classification of the query sample are estimated. These meta-features
are passed down to the meta-classifier \(\lambda\)
for the competence level estimation.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	probabilitiesarray of shape (n_samples, n_classifiers, n_classes)

	Probabilities estimates obtained by each each base classifier for
each query sample.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	The competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/meta_des.py#L159-L217]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
method.

This method also extracts the meta-features and trains the
meta-classifier \(\lambda\) if the meta-classifier was
not yet trained.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/meta_des.py#L412-L437]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold defined in self.selection_threshold.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	The competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

DES Clustering

	
class deslib.des.des_clustering.DESClustering(pool_classifiers=None, clustering=None, with_IH=False, safe_k=None, IH_rate=0.3, pct_accuracy=0.5, pct_diversity=0.33, more_diverse=True, metric_diversity='DF', metric_performance='accuracy_score', n_clusters=5, random_state=None, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_clustering.py#L19-L430]

	Dynamic ensemble selection-Clustering (DES-Clustering).

This method selects an ensemble of classifiers taking into account the
accuracy and diversity of the base classifiers. The K-means algorithm is
used to define the region of competence. For each cluster, the N most
accurate classifiers are first selected. Then, the J more diverse
classifiers from the N most accurate classifiers are selected to
compose the ensemble.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	clusteringsklearn.cluster (Default = None)

	The clustering model used to estimate the region of competence.
If None, a KMeans with K = 5 is used.

	pct_accuracyfloat (Default = 0.5)

	Percentage of base classifiers selected based on accuracy

	pct_diversityfloat (Default = 0.33)

	Percentage of base classifiers selected based on diversity

	more_diverseBoolean (Default = True)

	Whether we select the most or the least diverse classifiers
to add to the pre-selected ensemble

	metric_diversityString (Default = ‘df’)

	Metric used to estimate the diversity of the base classifiers. Can be
either the double fault (df), Q-statistics (Q), or error correlation.

	metric_performanceString (Default = ‘accuracy_score’)

	Metric used to estimate the performance of a base classifier on a
cluster. Can be either any metric from sklearn.metrics.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Soares, R. G., Santana, A., Canuto, A. M., & de Souto, M. C. P.
“Using accuracy and more_diverse to select classifiers to build ensembles.”
International Joint Conference on Neural Networks (IJCNN)., 2006.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_clustering.py#L227-L251]

	Get the competence estimates of each base classifier \(c_{i}\)
for the classification of the query sample.

In this case, the competences were already pre-calculated for each
cluster. So this method computes the nearest cluster and get the
pre-calculated competences of the base classifiers for the
corresponding cluster.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The query sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray = [n_samples, n_classifiers]

	The competence level estimated for each base classifier.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_clustering.py#L113-L176]

	Train the DS model by setting the Clustering algorithm and
pre-processing the information required to apply the DS
methods.

First the data is divided into K clusters. Then, for each cluster,
the N most accurate classifiers are first selected. Then, the J more
diverse classifiers from the N most accurate classifiers are selected
to compose the ensemble of the corresponding cluster. An ensemble of
classifiers is assigned to each of the K clusters.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(query)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_clustering.py#L253-L274]

	Select an ensemble with the most accurate and most diverse
classifier for the classification of the query.

The ensemble for each cluster was already pre-calculated in the fit
method. So, this method calculates the closest cluster, and returns
the ensemble associated to this cluster.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	Returns

	
	selected_classifiersarray of shape = [n_samples, self.k]

	Indices of the selected base classifier for each test example.

Dynamic Ensemble Selection performance (DES-P)

	
class deslib.des.des_p.DESP(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_p.py#L12-L180]

	Dynamic ensemble selection-Performance(DES-P).

This method selects all base classifiers that achieve a classification
performance, in the region of competence, that is higher than the random
classifier (RC). The performance of the random classifier is defined by
RC = 1/L, where L is the number of classes in the problem.
If no base classifier is selected, the whole pool is used for
classification.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method..

References

Woloszynski, Tomasz, et al. “A measure of competence based on random
classification for dynamic ensemble selection.”
Information Fusion 13.3 (2012): 207-213.

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of
classifier competence for dynamic ensemble selection.”
Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_p.py#L119-L150]

	estimate the competence of each base classifier \(c_{i}\) for
the classification of the query sample base on its local performance.

\[\delta_{i,j} = \hat{P}(c_{i} \mid \theta_{j})
- \frac{1}{L}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_p.py#L152-L180]

	Selects all base classifiers that obtained a local classification
accuracy higher than the Random Classifier. The performance of the
random classifier is denoted 1/L, where L is the number of classes
in the problem.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

DES-KNN

	
class deslib.des.des_knn.DESKNN(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, pct_accuracy=0.5, pct_diversity=0.3, more_diverse=True, metric='DF', random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_knn.py#L15-L441]

	Dynamic ensemble Selection KNN (DES-KNN).

This method selects an ensemble of classifiers taking into account the
accuracy and diversity of the base classifiers. The k-NN algorithm is used
to define the region of competence. The N most accurate classifiers in the
region of competence are first selected. Then, the J more diverse
classifiers from the N most accurate classifiers are selected to compose
the ensemble.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	pct_accuracyfloat (Default = 0.5)

	Percentage of base classifiers selected based on accuracy

	pct_diversityfloat (Default = 0.3)

	Percentage of base classifiers selected based n diversity

	more_diverseBoolean (Default = True)

	Whether we select the most or the least diverse classifiers to add
to the pre-selected ensemble

	metricString (Default = ‘df’)

	Metric used to estimate the diversity of the base classifiers. Can be
either the double fault (df), Q-statistics (Q), or error correlation.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Soares, R. G., Santana, A., Canuto, A. M., & de Souto, M. C. P.
“Using accuracy and more_diverse to select classifiers to build ensembles.”
International Joint Conference on Neural Networks (IJCNN)., 2006.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_knn.py#L165-L227]

	estimate the competence level of each base classifier \(c_{i}\)
for the classification of the query sample.

The competence is estimated using the accuracy and diversity criteria.
First the classification accuracy of the base classifiers in the
region of competence is estimated. Then the diversity of the
base classifiers is estimated.

The method returns two arrays: One containing the accuracy and the
other the diversity of each base classifier.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The query sample.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	accuracyarray of shape = [n_samples, n_classifiers}

	Local Accuracy estimates (competences) of the base
classifiers for all query samples.

	diversityarray of shape = [n_samples, n_classifiers}

	Average pairwise diversity of each base classifiers for
all test examples.

Notes

This technique uses both the accuracy and diversity information to
perform dynamic selection. For this reason the function returns a
dictionary containing these two values instead of a single ndarray
containing the competence level estimates for each base classifier.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_knn.py#L136-L163]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
method.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(accuracy, diversity)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_knn.py#L229-L273]

	Select an ensemble containing the N most accurate ant the J most
diverse classifiers for the classification of the query sample.

	Parameters

	
	accuracyarray of shape (n_samples, n_classifiers)

	Local Accuracy estimates (competence) of each base classifiers.

	diversityarray of shape (n_samples, n_classifiers)

	Average pairwise diversity of each base classifiers.

	Returns

	
	selected_classifiersarray of shape = [n_samples, self.J]

	Array containing the indices of the J selected base classifier
for each test example.

k-Nearest Output Profiles (KNOP)

	
class deslib.des.knop.KNOP(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knop.py#L12-L284]

	k-Nearest Output Profiles (KNOP).

This method selects all classifiers that correctly classified at least
one sample belonging to the region of competence of the query sample.
In this case, the region of competence is estimated using the decisions
of the base classifier (output profiles). Thus, the similarity between
the query and the validation samples are measured in the decision space
rather than the feature space. Each selected classifier has a number of
votes equals to the number of samples in the region of competence that
it predicts the correct label. The votes obtained by all
base classifiers are aggregated to obtain the final ensemble decision.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Cavalin, Paulo R., Robert Sabourin, and Ching Y. Suen.
“LoGID: An adaptive framework combining local and global
incremental learning for dynamic selection of ensembles of HMMs.”
Pattern Recognition 45.9 (2012): 3544-3556.

Cavalin, Paulo R., Robert Sabourin, and Ching Y. Suen.
“Dynamic selection approaches for multiple classifier
systems.” Neural Computing and Applications 22.3-4 (2013): 673-688.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr.
“From dynamic classifier selection to dynamic ensemble
selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence_from_proba(query, probabilities, neighbors=None, distances=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knop.py#L215-L252]

	The competence of the base classifiers is simply estimated as
the number of samples in the region of competence that it correctly
classified. This method received an array with
the pre-calculated probability estimates for each query.

This information is later used to determine the number of votes
obtained for each base classifier.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	probabilitiesarray of shape (n_samples, n_classifiers, n_classes)

	Probabilities estimates obtained by each each base classifier
for each query sample.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knop.py#L124-L156]

	Train the DS model by setting the KNN algorithm and
pre-process the information required to apply the DS
methods. In this case, the scores of the base classifiers for
the dynamic selection dataset (DSEL) are pre-calculated to
transform each sample in DSEL into an output profile.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knop.py#L254-L284]

	Select the base classifiers for the classification of the query
sample.

Each base classifier can be selected more than once. The number of
times a base classifier is selected (votes) is equals to the number
of samples it correctly classified in the region of competence.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

k-Nearest Oracle-Eliminate (KNORA-E)

	
class deslib.des.knora_e.KNORAE(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knora_e.py#L12-L213]

	k-Nearest Oracles Eliminate (KNORA-E).

This method searches for a local Oracle, which is a base classifier
that correctly classify all samples belonging to the region of competence
of the test sample. All classifiers with a perfect performance in the
region of competence are selected (local Oracles). In the case that no
classifier achieves a perfect accuracy, the size of the competence region
is reduced (by removing the farthest neighbor) and the performance of the
classifiers are re-evaluated. The outputs of the selected ensemble of
classifiers is combined using the majority voting scheme. If no base
classifier is selected, the whole pool is used for classification.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr.
“From dynamic classifier selection to dynamic ensemble
selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knora_e.py#L116-L168]

	Estimate the competence of the base classifiers. In the case of
the KNORA-E technique, the classifiers are only considered competent
when they achieve a 100% accuracy in the region of competence.
For each base, we estimate the maximum size of the region of competence
that it is a local oracle. The competence level estimate is then the
maximum size of the region of competence that the corresponding base
classifier is considered a local Oracle.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knora_e.py#L170-L213]

	Selects all base classifiers that obtained a local accuracy of 100%
in the region of competence (i.e., local oracle). In the case that no
base classifiers obtain 100% accuracy, the size of the region of
competence is reduced and the search for the local oracle is restarted.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

Notes

Instead of re-applying the method several times (reducing the size of
the region of competence), we compute the number of consecutive correct
classification of each base classifier starting from the closest
neighbor to the more distant in the estimate_competence function.
The number of consecutive correct classification represents the size
of the region of competence in which the corresponding base classifier
is an Local Oracle. Then, we select all base classifiers with the
maximum value for the number of consecutive correct classification.
This speed up the selection process.

k-Nearest Oracle Union (KNORA-U)

	
class deslib.des.knora_u.KNORAU(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knora_u.py#L12-L176]

	k-Nearest Oracles Union (KNORA-U).

This method selects all classifiers that correctly classified at least
one sample belonging to the region of competence of the query sample. Each
selected classifier has a number of votes equals to the number of samples
in the region of competence that it predicts the correct label. The votes
obtained by all base classifiers are aggregated to obtain the final
ensemble decision.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr.
“From dynamic classifier selection to dynamic ensemble
selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira.
“Dynamic selection of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knora_u.py#L111-L144]

	The competence of the base classifiers is simply estimated as the
number of samples in the region of competence that it
correctly classified.

This information is later used to determine the number of votes
obtained for each base classifier.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test sample

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/knora_u.py#L146-L176]

	Select the base classifiers for the classification of the query
sample.

Each base classifier can be selected more than once. The number of
times a base classifier is selected (votes) is equals to the number
of samples it correctly classified in the region of competence.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

DES Multiclass Imbalance (DES-MI)

	
class deslib.des.des_mi.DESMI(pool_classifiers=None, k=7, pct_accuracy=0.4, alpha=0.9, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, random_state=None, knn_classifier='knn', knne=False, DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_mi.py#L13-L343]

	Dynamic ensemble Selection for multi-class imbalanced datasets (DES-MI).

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	alphafloat (Default = 0.9)

	Scaling coefficient to regulate the weight value

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

KNNE available on deslib.utils.knne

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	knnebool (Default=False)

	Whether to use K-Nearest Neighbor Equality (KNNE) for the region
of competence estimation.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

García, S.; Zhang, Z.-L.; Altalhi, A.; Alshomrani, S. & Herrera, F.
“Dynamic ensemble selection for multi-class
imbalanced datasets.” Information Sciences, 2018, 445-446, 22 - 37

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances=None, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_mi.py#L114-L167]

	estimate the competence level of each base classifier \(c_{i}\)
for the classification of the query sample. Returns a ndarray
containing the competence level of each base classifier.

The competence is estimated using the accuracy criteria.
The accuracy is estimated by the weighted results of classifiers who
correctly classify the members in the competence region. The weight
of member \(x_i\) is related to the number of samples of the same
class of \(x_i\) in the training dataset.
For detail, please see the first reference, Algorithm 2.

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The query sample.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	accuracyarray of shape = [n_samples, n_classifiers}

	Local Accuracy estimates (competences) of the base classifiers
for all query samples.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L187-L253]

	Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	self

	

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/des_mi.py#L169-L194]

	Select an ensemble containing the N most accurate classifiers for
the classification of the query sample.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence estimates of each base classifiers for all query
samples.

	Returns

	
	selected_classifiersarray of shape = [n_samples, self.N]

	Matrix containing the indices of the N selected base classifier
for each test example.

Probabilistic

	
class deslib.des.probabilistic.BaseProbabilistic(pool_classifiers=None, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', selection_threshold=None, random_state=None, knn_classifier='knn', DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L13-L209]

	Base class for a DS method based on the potential function model.
All DS methods based on the Potential function should inherit from this
class.

Warning: This class should not be used directly.
Use derived classes instead.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L93-L136]

	estimate the competence of each base classifier \(c_{i}\)
using the source of competence \(C_{src}\) and the potential
function model. The source of competence \(C_{src}\) for all
data points in DSEL is already pre-computed in the fit() steps.

\[\delta_{i,j} = \frac{\sum_{k=1}^{N}C_{src} \:
exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}
{exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L44-L80]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of
competence (C_src) is calculated for each data point in DSEL in order
to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is
overridden by each DS method based on this paradigm.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
static potential_func(dist)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L172-L194]

	Gaussian potential function to decrease the
influence of the source of competence as the distance between
\(\mathbf{x}_{k}\) and the query \(\mathbf{x}_{q}\)
increases. The function is computed using the following equation:

\[potential = exp(-dist (\mathbf{x}_{k},
\mathbf{x}_{q})^{2})\]

where dist represents the Euclidean distance between
\(\mathbf{x}_{k}\) and \(\mathbf{x}_{q}\)

	Parameters

	
	distarray of shape = [self.n_samples]

	distance between the corresponding sample to the query

	Returns

	
	The result of the potential function for each value in (dist)

	

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L138-L170]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold. In this case, the threshold indicates
the competence of the random classifier.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

	
source_competence()[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L196-L209]

	Method used to estimate the source of competence at each data
point.

Each DS technique based on this paradigm should define its
computation of C_src

	Returns

	
	C_srcarray of shape (n_samples, n_classifiers)

	The competence source for each base classifier at each data point.

	Randomized Reference Classifier (RRC)

	DES-Kullback Leibler

	DES-Minimum Difference

	DES-Exponential

	DES-Logarithmic

Randomized Reference Classifier (RRC)

	
class deslib.des.probabilistic.RRC(pool_classifiers=None, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', random_state=None, knn_classifier='knn', DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/rrc.py#L7-L124]

	DES technique based on the Randomized Reference Classifier method
(DES-RRC).

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of
classifier competence for dynamic ensemble selection.” Pattern Recognition
44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L93-L136]

	estimate the competence of each base classifier \(c_{i}\)
using the source of competence \(C_{src}\) and the potential
function model. The source of competence \(C_{src}\) for all
data points in DSEL is already pre-computed in the fit() steps.

\[\delta_{i,j} = \frac{\sum_{k=1}^{N}C_{src} \:
exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}
{exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L44-L80]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of
competence (C_src) is calculated for each data point in DSEL in order
to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is
overridden by each DS method based on this paradigm.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L138-L170]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold. In this case, the threshold indicates
the competence of the random classifier.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

	
source_competence()[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/rrc.py#L100-L124]

	Calculates the source of competence using the randomized reference
classifier (RRC) method.

The source of competence C_src at the validation point
\(\mathbf{x}_{k}\) calculated using the probabilistic model
based on the supports obtained by the base classifier and
randomized reference classifier (RRC) model. The probabilistic
modeling of the classifier competence is calculated using
the ccprmod function.

	Returns

	
	C_srcarray of shape (n_samples, n_classifiers)

	The competence source for each base classifier at each data point.

DES-Kullback Leibler

	
class deslib.des.probabilistic.DESKL(pool_classifiers=None, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', random_state=None, knn_classifier='knn', DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/deskl.py#L7-L132]

	Dynamic Ensemble Selection-Kullback-Leibler divergence (DES-KL).

This method estimates the competence of the classifier from the information
theory perspective. The competence of the base classifiers is calculated as
the KL divergence between the vector of class supports produced by the base
classifier and the outputs of a random classifier (RC)
RC = 1/L, L being the number of classes in the problem. Classifiers with a
competence higher than the competence of the random classifier is selected.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Woloszynski, Tomasz, et al. “A measure of competence based on random
classification for dynamic ensemble selection.”
Information Fusion 13.3 (2012): 207-213.

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of
classifier competence for dynamic ensemble selection.”
Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L93-L136]

	estimate the competence of each base classifier \(c_{i}\)
using the source of competence \(C_{src}\) and the potential
function model. The source of competence \(C_{src}\) for all
data points in DSEL is already pre-computed in the fit() steps.

\[\delta_{i,j} = \frac{\sum_{k=1}^{N}C_{src} \:
exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}
{exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L44-L80]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of
competence (C_src) is calculated for each data point in DSEL in order
to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is
overridden by each DS method based on this paradigm.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L138-L170]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold. In this case, the threshold indicates
the competence of the random classifier.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

	
source_competence()[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/deskl.py#L109-L132]

	Calculates the source of competence using the KL divergence method.

The source of competence C_src at the validation point
\(\mathbf{x}_{k}\) is calculated by the KL divergence
between the vector of class supports produced by the base classifier
and the outputs of a random classifier (RC) RC = 1/L, L being the
number of classes in the problem. The value of C_src is negative if
the base classifier misclassified the instance \(\mathbf{x}_{k}\).

	Returns

	
	C_srcarray of shape (n_samples, n_classifiers)

	The competence source for each base classifier at each data point.

DES-Minimum Difference

	
class deslib.des.probabilistic.MinimumDifference(pool_classifiers=None, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', random_state=None, knn_classifier='knn', DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/minimum_difference.py#L7-L131]

	Computes the competence level of the classifiers based on the difference
between the support obtained by each class. The competence level at a data
point \(\mathbf{x}_{k}\) is equal to the minimum difference between
the support obtained to the correct class and the support obtained for
different classes.

The influence of each sample xk is defined according to a Gaussian function
model[2]. Samples that are closer to the query have a higher influence
in the competence estimation.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

[1] B. Antosik, M. Kurzynski, New measures of classifier competence
– heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems
4., 2011, pp. 197–206.

[2] Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of
classifier competence for dynamic ensemble selection.”
Pattern Recognition 44.10 (2011): 2656-2668.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L93-L136]

	estimate the competence of each base classifier \(c_{i}\)
using the source of competence \(C_{src}\) and the potential
function model. The source of competence \(C_{src}\) for all
data points in DSEL is already pre-computed in the fit() steps.

\[\delta_{i,j} = \frac{\sum_{k=1}^{N}C_{src} \:
exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}
{exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L44-L80]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of
competence (C_src) is calculated for each data point in DSEL in order
to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is
overridden by each DS method based on this paradigm.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L138-L170]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold. In this case, the threshold indicates
the competence of the random classifier.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

	
source_competence()[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/minimum_difference.py#L112-L131]

	Calculates the source of competence using the
Minimum Difference method.

The source of competence C_src at the validation point
\(\mathbf{x}_{k}\) calculated by the Minimum Difference between
the supports obtained to the correct class and the support obtained by
the other classes

	Returns

	
	C_srcarray of shape (n_samples, n_classifiers)

	The competence source for each base classifier at each data point.

DES-Exponential

	
class deslib.des.probabilistic.Exponential(pool_classifiers=None, k=None, DFP=False, safe_k=None, with_IH=False, IH_rate=0.3, mode='selection', random_state=None, knn_classifier='knn', DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/exponential.py#L7-L129]

	The source of competence C_src at the validation point
\(\mathbf{x}_{k}\) is a product of two factors: The absolute value of
the competence and the sign. The value of the source competence is
inverse proportional to the normalized entropy of its supports vector.
The sign of competence is simply determined by correct/incorrect
classification of \(\mathbf{x}_{k}\) [1].

The influence of each sample \(\mathbf{x}_{k}\) is defined according
to a Gaussian function model[2]. Samples that are closer to the query have
a higher influence in the competence estimation.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

[1] B. Antosik, M. Kurzynski, New measures of classifier competence
– heuristics and application to the design of multiple classifier systems.,
in: Computer recognition systems 4., 2011, pp. 197–206.

[2] Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of
classifier competence for dynamic ensemble selection.”
Pattern Recognition 44.10 (2011): 2656-2668.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L93-L136]

	estimate the competence of each base classifier \(c_{i}\)
using the source of competence \(C_{src}\) and the potential
function model. The source of competence \(C_{src}\) for all
data points in DSEL is already pre-computed in the fit() steps.

\[\delta_{i,j} = \frac{\sum_{k=1}^{N}C_{src} \:
exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}
{exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L44-L80]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of
competence (C_src) is calculated for each data point in DSEL in order
to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is
overridden by each DS method based on this paradigm.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L138-L170]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold. In this case, the threshold indicates
the competence of the random classifier.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

	
source_competence()[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/exponential.py#L108-L129]

	The source of competence C_src at the validation point
\(\mathbf{x}_{k}\) is a product of two factors: The absolute
value of the competence and the sign. The value of the source
competence is inverse proportional to the normalized entropy of its
supports vector.The sign of competence is simply determined by
correct/incorrect classification of the instance \(\mathbf{x}_k\).

	Returns

	
	C_srcarray of shape (n_samples, n_classifiers)

	The competence source for each base classifier at each data point.

DES-Logarithmic

	
class deslib.des.probabilistic.Logarithmic(pool_classifiers=None, k=None, DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, mode='selection', random_state=None, knn_classifier='knn', DSEL_perc=0.5, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/logarithmic.py#L7-L116]

	This method estimates the competence of the classifier based on
the logarithmic difference between the supports obtained by the
base classifier.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	kint (Default = 7)

	Number of neighbors used to estimate the competence of the base
classifiers.

	DFPBoolean (Default = False)

	Determines if the dynamic frienemy pruning is applied.

	with_IHBoolean (Default = False)

	Whether the hardness level of the region of competence is used to
decide between using the DS algorithm or the KNN for classification of
a given query sample.

	safe_kint (default = None)

	The size of the indecision region.

	IH_ratefloat (default = 0.3)

	Hardness threshold. If the hardness level of the competence region is
lower than the IH_rate the KNN classifier is used. Otherwise, the DS
algorithm is used for classification.

	modeString (Default = “selection”)

	Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	knn_classifier{‘knn’, ‘faiss’, None} (Default = ‘knn’)

	The algorithm used to estimate the region of competence:

	‘knn’ will use KNeighborsClassifier from sklearn

	‘faiss’ will use Facebook’s Faiss similarity search through the
class FaissKNNClassifier

	None, will use sklearn KNeighborsClassifier.

	DSEL_percfloat (Default = 0.5)

	Percentage of the input data used to fit DSEL.
Note: This parameter is only used if the pool of classifier is None or
unfitted.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

B. Antosik, M. Kurzynski, New measures of classifier competence
– heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems
4., 2011, pp. 197–206.

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized
reference classifier for dynamic ensemble selection, in: International
Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.

	
estimate_competence(query, neighbors, distances, predictions=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L93-L136]

	estimate the competence of each base classifier \(c_{i}\)
using the source of competence \(C_{src}\) and the potential
function model. The source of competence \(C_{src}\) for all
data points in DSEL is already pre-computed in the fit() steps.

\[\delta_{i,j} = \frac{\sum_{k=1}^{N}C_{src} \:
exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}
{exp(-d (\mathbf{x}_{k}, \mathbf{x}_{q})^{2})}\]

	Parameters

	
	queryarray of shape (n_samples, n_features)

	The test examples.

	neighborsarray of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors according for each test sample.

	distancesarray of shape (n_samples, n_neighbors)

	Distances of the k nearest neighbors according for each test
sample.

	predictionsarray of shape (n_samples, n_classifiers)

	Predictions of the base classifiers for all test examples.

	Returns

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L44-L80]

	Train the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
methods. In the case of probabilistic techniques, the source of
competence (C_src) is calculated for each data point in DSEL in order
to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is
overridden by each DS method based on this paradigm.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L399-L538]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class label for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/base.py#L540-L655]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

	
select(competences)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/base.py#L138-L170]

	Selects the base classifiers that obtained a competence level higher
than the predefined threshold. In this case, the threshold indicates
the competence of the random classifier.

	Parameters

	
	competencesarray of shape (n_samples, n_classifiers)

	Competence level estimated for each base classifier and test
example.

	Returns

	
	selected_classifiersarray of shape (n_samples, n_classifiers)

	Boolean matrix containing True if the base classifier is selected,
False otherwise.

	
source_competence()[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/des/probabilistic/logarithmic.py#L98-L116]

	The source of competence C_src at the validation point
\(\mathbf{x}_{k}\) is calculated by
logarithm function in the support obtained by the base classifier.

	Returns

	
	C_srcarray of shape (n_samples, n_classifiers)

	The competence source for each base classifier at each data point.

Oracle

	
class deslib.static.oracle.Oracle(pool_classifiers=None, random_state=None, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/oracle.py#L12-L163]

	Abstract method that always selects the base classifier that predicts
the correct label if such classifier exists. This method is often used to
measure the upper-limit performance that can be achieved by a dynamic
classifier selection technique. It is used as a benchmark by several
dynamic selection algorithms

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Kuncheva, Ludmila I. “A theoretical study on six classifier fusion
strategies.” IEEE Transactions on Pattern Analysis & Machine Intelligence,
(2002): 281-286.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/oracle.py#L56-L74]

	Fit the model according to the given training data.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/oracle.py#L76-L109]

	Prepare the labels using the Oracle model.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified

	yarray of shape (n_samples)

	Class labels of each sample in X.

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class for each sample in X.

	
predict_proba(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/oracle.py#L111-L139]

	Estimates the posterior probabilities for each class for each sample
in X.

Note that as the Oracle is the ideal classifier selection, the
classifier that estimate the highest probability for the correct class
is the selected one.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified.

	yarray of shape (n_samples)

	Class labels of each sample in X.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Posterior probabilities estimates for each class.

	
score(X, y, sample_weights=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/oracle.py#L141-L163]

	Prepare the labels using the Oracle model.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified.

	yarray of shape (n_samples)

	Class labels of each sample in X.

	sample_weightarray-like, shape = [n_samples], optional

	Sample weights.

	Returns

	
	accuracyfloat

	Classification accuracy of the Oracle model.

Single Best

	
class deslib.static.single_best.SingleBest(pool_classifiers=None, scoring=None, random_state=None, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/single_best.py#L14-L147]

	Classification method that selects the classifier in the pool with
highest score to be used for classification. Usually, the performance of
the single best classifier is estimated based on the validation data.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	scoringstring, callable (default = None)

	A single string or a callable to evaluate the predictions on the
validation set.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/single_best.py#L63-L90]

	Fit the model by selecting the base classifier with the highest
accuracy in the dataset. The single best classifier is kept in
self.best_clf and its index is kept in self.best_clf_index.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/single_best.py#L99-L116]

	Predict the label of each sample in X and returns the predicted
label.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/single_best.py#L118-L141]

	Estimates the posterior probabilities for each class for each sample
in X. The returned probability estimates for all classes are ordered by
the label of classes.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Posterior probabilities estimates for each class.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

Static Selection

	
class deslib.static.static_selection.StaticSelection(pool_classifiers=None, pct_classifiers=0.5, scoring=None, random_state=None, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/static_selection.py#L16-L186]

	Ensemble model that selects N classifiers with the best performance in a
dataset

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict”. If None, then the pool of classifiers is a bagging
classifier.

	scoringstring, callable (default = None)

	A single string or a callable to evaluate the predictions on the
validation set.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	pct_classifiersfloat (Default = 0.5)

	Percentage of base classifier that should be selected by the selection
scheme.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.”
Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,”
Information Fusion, vol. 41, pp. 195 – 216, 2018.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/static_selection.py#L71-L114]

	Fit the static selection model by select an ensemble of classifier
containing the base classifiers with highest accuracy in the given
dataset.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	Returns

	
	selfobject

	Returns self.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/static_selection.py#L116-L139]

	Predict the label of each sample in X and returns the predicted
label.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/static_selection.py#L141-L157]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

Stacked Classifier

	
class deslib.static.stacked.StackedClassifier(pool_classifiers=None, meta_classifier=None, passthrough=False, random_state=None, n_jobs=-1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/stacked.py#L7-L193]

	A Stacking classifier.

	Parameters

	
	pool_classifierslist of classifiers (Default = None)

	The generated_pool of classifiers trained for the corresponding
classification problem. Each base classifiers should support the method
“predict” and “predict_proba”. If None, then the pool of classifiers
is a bagging classifier.

	meta_classifierobject or None, optional (default=None)

	Classifier model used to aggregate the output of the base classifiers.
If None, a LogisticRegression classifier is used.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	passthroughbool (default=False)

	When False, only the predictions of estimators will be used as
training data for the meta-classifier. When True, the
meta-classifier is trained on the predictions as well as the
original training data.

	n_jobsint, default=-1

	The number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors.
Doesn’t affect fit method.

References

Wolpert, David H. “Stacked generalization.” Neural networks 5,
no. 2 (1992): 241-259.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/stacked.py#L59-L91]

	Fit the model by training a meta-classifier on the outputs of the
base classifiers

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/stacked.py#L93-L112]

	Predict the label of each sample in X and returns the predicted
label.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class for each sample in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/static/stacked.py#L114-L139]

	Predict the label of each sample in X and returns the predicted
label.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The data to be classified

	Returns

	
	predicted_labelsarray of shape (n_samples)

	Predicted class for each sample in X.

	
score(X, y, sample_weight=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/../../sklearn/base.py#L475-L500]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.

	Parameters

	
	Xarray-like of shape (n_samples, n_features)

	Test samples.

	yarray-like of shape (n_samples,) or (n_samples, n_outputs)

	True labels for X.

	sample_weightarray-like of shape (n_samples,), default=None

	Sample weights.

	Returns

	
	scorefloat

	Mean accuracy of self.predict(X) wrt. y.

Diversity

This file contains the implementation of key diversity measures found in the ensemble literature:

	Double Fault

	Negative Double fault

	Q-statistics

	Ratio of errors

The implementation are made according to the specifications from the book “Combining Pattern Classifiers”.

	
deslib.util.diversity.Q_statistic(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L157-L180]

	Calculates the Q-statistics diversity measure between a pair of
classifiers. The Q value is in a range [-1, 1]. Classifiers that tend to
classify the same object correctly will have positive values of Q, and
Q = 0 for two independent classifiers.

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	QThe q-statistic measure between two classifiers

	

	
deslib.util.diversity.agreement_measure(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L242-L264]

	Calculates the agreement measure between a pair of classifiers. This
measure is calculated by the frequency that both classifiers either
obtained the correct or incorrect prediction for any given sample

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	agreementThe frequency at which both classifiers agrees

	

	
deslib.util.diversity.compute_pairwise_diversity(targets, prediction_matrix, diversity_func)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L292-L325]

	Computes the pairwise diversity matrix.

	Parameters

	
	targetsarray of shape (n_samples):

	Class labels of each sample in X.

	prediction_matrixarray of shape (n_samples, n_classifiers):

	Predicted class labels for each classifier in the pool

	diversity_funcFunction

	Function used to estimate the pairwise diversity

	Returns

	
	diversityarray of shape = [n_classifiers]

	The average pairwise diversity matrix calculated for the pool of
classifiers

	
deslib.util.diversity.correlation_coefficient(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L267-L289]

	Calculates the correlation between two classifiers using oracle
outputs. Coefficient is a value in a range [-1, 1].

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	rhoThe correlation coefficient measured between two classifiers

	

	
deslib.util.diversity.disagreement_measure(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L217-L239]

	Calculates the disagreement measure between a pair of classifiers. This
measure is calculated by the frequency that only one classifier makes the
correct prediction.

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	disagreementThe frequency at which both classifiers disagrees

	

	
deslib.util.diversity.double_fault(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L97-L126]

	Calculates the double fault (df) measure. This measure represents the
probability that both classifiers makes the wrong prediction. A lower value
of df means the base classifiers are less likely to make the same error.
This measure must be minimized to increase diversity.

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	dfThe double fault measure between two classifiers

	

References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network
ensembles for image classification purposes.”
Image and Vision Computing 19.9 (2001): 699-707.

	
deslib.util.diversity.negative_double_fault(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L129-L154]

	The negative of the double fault measure. This measure should be
maximized for a higher diversity.

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	dfThe negative double fault measure between two classifiers

	

References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network
ensembles for image classification purposes.”
Image and Vision Computing 19.9 (2001): 699-707.

	
deslib.util.diversity.ratio_errors(y, y_pred1, y_pred2)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/diversity.py#L183-L214]

	Calculates Ratio of errors diversity measure between a pair of
classifiers. A higher value means that the base classifiers are less likely
to make the same errors. The ratio must be maximized for a higher diversity

	Parameters

	
	yarray of shape (n_samples):

	class labels of each sample.

	y_pred1array of shape (n_samples):

	predicted class labels by the classifier 1 for each sample.

	y_pred2array of shape (n_samples):

	predicted class labels by the classifier 2 for each sample.

	Returns

	
	ratioThe q-statistic measure between two classifiers

	

References

Aksela, Matti. “Comparison of classifier selection methods for improving
committee performance.”
Multiple Classifier Systems (2003): 159-159.

Aggregation

This file contains the implementation of different aggregation functions to combine the outputs of the base
classifiers to give the final decision.

	
deslib.util.aggregation.average_combiner(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L221-L238]

	Ensemble combination using the Average rule.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.average_rule(predictions)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L322-L338]

	Apply the average fusion rule to the predicted vector of class supports
(predictions).

	Parameters

	
	predictionsnp array of shape (n_samples, n_classifiers, n_classes)

	Vector of class supports predicted by each base classifier for sample

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.majority_voting(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L27-L47]

	Apply the majority voting rule to predict the label of each sample in X.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the
aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.majority_voting_rule(votes)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L108-L123]

	Applies the majority voting rule to the estimated votes.

	Parameters

	
	votesarray of shape (n_samples, n_classifiers),

	The votes obtained by each classifier for each sample.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.maximum_combiner(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L262-L279]

	Ensemble combination using the Maximum rule.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.maximum_rule(predictions)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L379-L395]

	Apply the product fusion rule to the predicted vector of class supports
(predictions).

	Parameters

	
	predictionsnp array of shape (n_samples, n_classifiers, n_classes)

	Vector of class supports predicted by each base classifier for sample

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.median_combiner(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L302-L319]

	Ensemble combination using the Median rule.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.median_rule(predictions)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L360-L376]

	Apply the product fusion rule to the predicted vector of class supports
(predictions).

	Parameters

	
	predictionsnp array of shape (n_samples, n_classifiers, n_classes)

	Vector of class supports predicted by each base classifier for sample

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.minimum_combiner(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L282-L299]

	Ensemble combination using the Minimum rule.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.minimum_rule(predictions)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L398-L415]

	Apply the product fusion rule to the predicted vector of class supports
(predictions).

	Parameters

	
	predictionsnp array of shape (n_samples, n_classifiers, n_classes)

	Vector of class supports predicted by each base classifier for sample

	Returns

	
	list_probaarray of shape = [n_classifiers, n_samples, n_classes]

	Probabilities predicted by each base classifier in the ensemble for all
samples in X.

	
deslib.util.aggregation.predict_proba_ensemble(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L191-L211]

	Estimates the posterior probabilities of the give ensemble for each
sample in X.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_probaarray of shape (n_samples, n_classes)

	Posterior probabilities estimates for each samples in X.

	
deslib.util.aggregation.product_combiner(classifier_ensemble, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L241-L259]

	Ensemble combination using the Product rule.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape = [n_classifiers, n_samples, n_classes]

	Probabilities predicted by each base classifier in the ensemble for all
samples in X.

	
deslib.util.aggregation.product_rule(predictions)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L341-L357]

	Apply the product fusion rule to the predicted vector of class supports
(predictions).

	Parameters

	
	predictionsarray of shape (n_samples, n_classifiers, n_classes)

	Vector of class supports predicted by each base classifier for sample

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.weighted_majority_voting(classifier_ensemble, weights, X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L50-L74]

	Apply the weighted majority voting rule to predict the label of each
sample in X. The size of the weights vector should be equal to the size of
the ensemble.

	Parameters

	
	classifier_ensemblelist of shape = [n_classifiers]

	Containing the ensemble of classifiers used in the aggregation scheme.

	weightsarray of shape (n_samples, n_classifiers)

	Weights associated to each base classifier for each sample

	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

	
deslib.util.aggregation.weighted_majority_voting_rule(votes, weights, labels_set=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/aggregation.py#L126-L162]

	Applies the weighted majority voting rule based on the votes obtained by
each base classifier and their
respective weights.

	Parameters

	
	votesarray of shape (n_samples, n_classifiers),

	The votes obtained by each classifier for each sample.

	weightsarray of shape (n_samples, n_classifiers)

	Weights associated to each base classifier for each sample

	labels_set(Default=None) set with the possible classes in the problem.

	

	Returns

	
	predicted_labelarray of shape (n_samples)

	The label of each query sample predicted using the majority voting rule

Probabilistic Functions

This file contains the implementation of several functions used to estimate the competence
level of a base classifiers based on posterior probabilities predicted for each class.

	
deslib.util.prob_functions.ccprmod(supports, idx_correct_label, B=20)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/prob_functions.py#L146-L224]

	Python implementation of the ccprmod.m (Classifier competence based on
probabilistic modelling)
function. Matlab code is available at:
http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/28391/versions/6/previews/ccprmod.m/index.html

	Parameters

	
	supports: array of shape (n_samples, n_classes)

	Containing the supports obtained by the base classifier for each class.

	idx_correct_label: array of shape (n_samples)

	containing the index of the correct class.

	Bint (Default = 20)

	number of points used in the calculation of the competence, higher
values result in a more accurate estimation.

	Returns

	
	C_srcarray of shape (n_samples)

	representing the classifier competences at each data point

References

T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence
for dynamic ensemble selection,
Pattern Recognition 44 (2011) 2656–2668.

Examples

>>> supports = [[0.3, 0.6, 0.1],[1.0/3, 1.0/3, 1.0/3]]
>>> idx_correct_label = [1,0]
>>> ccprmod(supports,idx_correct_label)
ans = [0.784953394056843, 0.332872292262951]

	
deslib.util.prob_functions.entropy_func(n_classes, supports, is_correct)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/prob_functions.py#L103-L143]

	Calculate the entropy in the support obtained by
the base classifier. The value of the source competence is inverse
proportional to the normalized entropy of its supports vector and the sign
of competence is simply determined by the correct/incorrect classification

	Parameters

	
	n_classesint

	The number of classes in the problem

	supports: array of shape (n_samples, n_classes)

	Containing the supports obtained by the base classifier for each class.

	is_correct: array of shape (n_samples)

	Array with 1 whether the base classifier predicted the correct label
and -1 otherwise

	Returns

	
	C_srcarray of shape (n_samples)

	Representing the classifier competences at each data point

References

B. Antosik, M. Kurzynski, New measures of classifier competence –
heuristics and application to the design of multiple classifier systems.,
in: Computer recognition systems 4., 2011, pp. 197–206.

	
deslib.util.prob_functions.exponential_func(n_classes, support_correct)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/prob_functions.py#L31-L63]

	Calculate the exponential function based on the support obtained by
the base classifier for the correct class label.

	Parameters

	
	n_classesint

	The number of classes in the problem

	support_correct: array of shape (n_samples)

	containing the supports obtained by the base classifier for the correct
class

	Returns

	
	C_srcarray of shape (n_samples)

	Representing the classifier competences at each data point

	
deslib.util.prob_functions.log_func(n_classes, support_correct)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/prob_functions.py#L66-L100]

	Calculate the logarithm in the support obtained by
the base classifier.

	Parameters

	
	n_classesint

	The number of classes in the problem

	support_correct: array of shape (n_samples)

	Containing the supports obtained by the base classifier for the correct
class

	Returns

	
	C_srcarray of shape (n_samples)

	representing the classifier competences at each data point

References

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized
reference classifier for dynamic ensemble selection, in: International
Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.

	
deslib.util.prob_functions.min_difference(supports, idx_correct_label)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/prob_functions.py#L227-L267]

	The minimum difference between the supports obtained for the correct
class and the vector of class supports. The value of the source competence
is negative if the sample is misclassified and positive otherwise.

	Parameters

	
	supports: array of shape (n_samples, n_classes)

	Containing the supports obtained by the base classifier for each class

	idx_correct_label: array of shape (n_samples)

	Containing the index of the correct class

	Returns

	
	C_srcarray of shape (n_samples)

	Representing the classifier competences at each data point

References

B. Antosik, M. Kurzynski, New measures of classifier competence –
heuristics and application to the design of multiple classifier systems.,
in: Computer recognition systems 4., 2011, pp. 197–206.

	
deslib.util.prob_functions.softmax(w, theta=1.0)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/prob_functions.py#L270-L292]

	Takes an vector w of S N-element and returns a vectors where each column
of the vector sums to 1, with elements exponentially proportional to the
respective elements in N.

	Parameters

	
	warray of shape = [N, M]

	

	thetafloat (default = 1.0)

	used as a multiplier prior to exponentiation.

	Returns

	
	distarray of shape = [N, M]

	Which the sum of each row sums to 1 and the elements are exponentially
proportional to the respective elements in N

Instance Hardness

This file contains the implementation of different measures of instance hardness.

	
deslib.util.instance_hardness.hardness_region_competence(neighbors_idx, labels, safe_k)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/instance_hardness.py#L24-L63]

	Calculate the Instance hardness of the sample based on its neighborhood.
The sample is deemed hard to classify when there is overlap between
different classes in the region of competence. This method does not
takes into account the target label of the test sample

This hardness measure is used to select whether use DS or use the KNN for
the classification of a given query sample

	Parameters

	
	neighbors_idxarray of shape = [n_samples_test, k]

	Indices of the nearest neighbors for each considered sample

	labelsarray of shape = [n_samples_train]

	labels associated with each training sample

	safe_kint

	Number of neighbors used to estimate the hardness of the corresponding
region

	Returns

	
	hardnessarray of shape = [n_samples_test]

	The Hardness level associated with each example.

References

Smith, M.R., Martinez, T. and Giraud-Carrier, C., 2014. An instance level
analysis of data complexity.
Machine learning, 95(2), pp.225-256

	
deslib.util.instance_hardness.kdn_score(X, y, k)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/instance_hardness.py#L66-L105]

	Calculates the K-Disagreeing Neighbors score (KDN) of each sample in the
input dataset.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	yarray of shape (n_samples)

	class labels of each example in X.

	kint

	Neighborhood size for calculating the KDN score.

	Returns

	
	scorearray of shape = [n_samples,1]

	KDN score of each sample in X.

	neighborsarray of shape = [n_samples,k]

	Indexes of the k neighbors of each sample in X.

References

M. R. Smith, T. Martinez, C. Giraud-Carrier, An instance level analysis of
data complexity,
Machine Learning 95 (2) (2014) 225-256.

Frienemy Pruning

Implementation of the Dynamic Frienemy Pruning (DFP) algorithm for online
pruning of base classifiers.

References

Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., Online Pruning
of Base Classifiers for Dynamic Ensemble Selection,
Pattern Recognition, vol. 72, December 2017, pp 44-58.

Cruz, Rafael MO, Dayvid VR Oliveira, George DC Cavalcanti, and Robert Sabourin.
“FIRE-DES++: Enhanced online pruning of base classifiers for dynamic ensemble
selection.” Pattern Recognition 85 (2019): 149-160.

	
deslib.util.dfp.frienemy_pruning(X_query, X_dsel, y_dsel, ensemble, k)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/dfp.py#L26-L59]

	Implements the Online Pruning method (frienemy) which prunes base
classifiers that do not cross the region of competence of a given instance.
A classifier crosses the region of competence if it correctly
classify at least one sample for each different class in the region.

	Parameters

	
	X_queryarray-like of shape (n_samples, n_features)

	Test set.

	X_dselarray-like of shape (n_samples, n_features)

	Dynamic selection set.

	y_dselarray-like of shape (n_samples,)

	The target values (Dynamic selection set).

	ensemblelist of shape = [n_classifiers]

	The ensemble of classifiers to be pruned.

	kint

	Number of neighbors used to compute the regions of competence.

	Returns

	
	DFP_maskarray-like of shape = [n_samples, n_classifiers]

	Mask containing 1 for the selected base classifier and 0
otherwise.

	
deslib.util.dfp.frienemy_pruning_preprocessed(neighbors, y_val, hit_miss)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/dfp.py#L62-L113]

	Implements the Online Pruning method (frienemy) which prunes base
classifiers that do not cross the region of competence of a given instance.
A classifier crosses the region of competence if it correctly
classify at least one sample for each different class in the region.

	Parameters

	
	neighborsarray-like of shape (n_samples, n_neighbors)

	Indices of the k nearest neighbors.

	y_valarray-like of shape (n_samples,)

	The target values (class labels).

	hit_missarray-like of shape (n_samples, n_classifiers)

	Matrix containing 1 when the base classifier made the correct
prediction, 0 otherwise.

	Returns

	
	DFP_maskarray-like of shape = [n_samples, n_classifiers]

	Mask containing 1 for the selected base classifier and 0
otherwise.

Notes

This implementation assumes the regions of competence of each query example
(neighbors) and the predictions for the dynamic selection data (hit_miss)
were already pre-computed.

KNN-Equality

	
class deslib.util.knne.KNNE(n_neighbors=7, knn_classifier='sklearn', **kwargs)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/knne.py#L13-L250]

	”
Implementation of the K-Nearest Neighbors-Equality technique.

This implementation fits a different KNN method for each class, and search
on each class for the nearest examples.

	Parameters

	
	n_neighborsint, (default = 7)

	Number of neighbors to use by default for kneighbors() queries.

	algorithmstr = [‘knn’, ‘faiss]’, (default = ‘knn’)

	Whether to use scikit-learn or faiss for nearest neighbors estimation.

References

Sierra, Basilio, Elena Lazkano, Itziar Irigoien, Ekaitz Jauregi,
and Iñigo Mendialdua. “K nearest neighbor equality: giving equal chance
to all existing classes.”
Information Sciences 181, no. 23 (2011): 5158-5168.

Mendialdua, Iñigo, José María Martínez-Otzeta, I. Rodriguez-Rodriguez,
T. Ruiz-Vazquez, and Basilio Sierra. “Dynamic selection of the best base
classifier in one versus one.” Knowledge-Based Systems 85 (2015): 298-306.

Cruz, Rafael MO, Dayvid VR Oliveira, George DC Cavalcanti,
and Robert Sabourin. “FIRE-DES++: Enhanced online pruning of base
classifiers for dynamic ensemble selection.”
Pattern Recognition 85 (2019): 149-160.

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/knne.py#L52-L87]

	Fit the model according to the given training data.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/knne.py#L89-L151]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.

	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’

	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.

	n_neighborsint

	Number of neighbors to get (default is the value
passed to the constructor).

	return_distanceboolean, optional. Defaults to True.

	If False, distances will not be returned

	Returns

	
	distarray

	Array representing the lengths to points, only present if
return_distance=True

	indarray

	Indices of the nearest points in the population matrix.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/knne.py#L153-L167]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predsarray, shape (n_samples,)

	Class labels for samples in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/knne.py#L169-L195]

	Return probability estimates for the test data X.

	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’

	Test samples.

	Returns

	
	probaarray of shape (n_samples, n_classes), or a list of n_outputs

	of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.

FAISS Wrapper

	
class deslib.util.faiss_knn_wrapper.FaissKNNClassifier(n_neighbors=5, n_jobs=None, algorithm='brute', n_cells=100, n_probes=1)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/faiss_knn_wrapper.py#L19-L203]

	Scikit-learn wrapper interface for Faiss KNN.

	Parameters

	
	n_neighborsint (Default = 5)

	Number of neighbors used in the nearest neighbor search.

	n_jobsint (Default = None)

	
	The number of jobs to run in parallel for both fit and predict.

	If -1, then the number of jobs is set to the number of cores.

	algorithm{‘brute’, ‘voronoi’} (Default = ‘brute’)

	Algorithm used to compute the nearest neighbors:

	‘brute’ will use the :class: IndexFlatL2 class from faiss.

	‘voronoi’ will use IndexIVFFlat class from faiss.

	‘hierarchical’ will use IndexHNSWFlat class from faiss.

Note that selecting ‘voronoi’ the system takes more time during
training, however it can significantly improve the search time
on inference. ‘hierarchical’ produce very fast and accurate indexes,
however it has a higher memory requirement. It’s recommended when
you have a lots of RAM or the dataset is small.

For more information see: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

	n_cellsint (Default = 100)

	Number of voronoi cells. Only used when algorithm==’voronoi’.

	n_probesint (Default = 1)

	Number of cells that are visited to perform the search. Note that the
search time roughly increases linearly with the number of probes.
Only used when algorithm==’voronoi’.

References

Johnson Jeff, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity
search with gpus.” arXiv preprint arXiv:1702.08734 (2017).

	
fit(X, y)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/faiss_knn_wrapper.py#L169-L187]

	Fit the model according to the given training data.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	Data used to fit the model.

	yarray of shape (n_samples)

	class labels of each example in X.

	
kneighbors(X, n_neighbors=None, return_distance=True)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/faiss_knn_wrapper.py#L99-L144]

	Finds the K-neighbors of a point.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	n_neighborsint

	Number of neighbors to get (default is the value passed to the
constructor).

	return_distanceboolean, optional. Defaults to True.

	If False, distances will not be returned

	Returns

	
	distslist of shape = [n_samples, k]

	The distances between the query and each sample in the region of
competence. The vector is ordered in an ascending fashion.

	idxlist of shape = [n_samples, k]

	Indices of the instances belonging to the region of competence of
the given query sample.

	
predict(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/faiss_knn_wrapper.py#L77-L97]

	Predict the class label for each sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	predsarray, shape (n_samples,)

	Class labels for samples in X.

	
predict_proba(X)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/faiss_knn_wrapper.py#L146-L167]

	Estimates the posterior probabilities for sample in X.

	Parameters

	
	Xarray of shape (n_samples, n_features)

	The input data.

	Returns

	
	preds_probaarray of shape (n_samples, n_classes)

	Probabilities estimates for each sample in X.

Datasets

This file contains routines to generate 2D classification datasets
that can be used to test the performance of different machine learning
algorithms.

	P2 Dataset

	Circle and Square

	Banana

	Banana 2

	
deslib.util.datasets.make_P2(size_classes, random_state=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/datasets.py#L26-L105]

	Generate the P2 Dataset:

The P2 is a two-class problem, presented by Valentini[1], in which each
class is defined in multiple decision regions delimited by polynomial
and trigonometric functions (E1, E2, E3 and E4):

\[\begin{split}\begin{eqnarray}
\label{eq:problem1}
E1(x) = sin(x) + 5 \\
\label{eq:problem2}
E2(x) = (x - 2)^{2} + 1 \\
\label{eq:problem3}
E3(x) = -0.1 \cdot x^{2} + 0.6sin(4x) + 8 \\
\label{eq:problem4}
E4(x) = \frac{(x - 10)^{2}}{2} + 7.902
\end{eqnarray}\end{split}\]

	Parameters

	
	size_classeslist with the number of samples for each class.

	

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	
	Xarray of shape = [size_classes, 2]

	The generated data points.

	yarray of shape = [size_classes]

	Class labels associated with each class.

References

G. Valentini, An experimental bias-variance analysis of svm ensembles
based on resampling techniques, IEEE Transactions on Systems, Man,
and Cybernetics, Part B 35 (2005) 1252–1271.

	
deslib.util.datasets.make_banana(size_classes, na=0.1, random_state=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/datasets.py#L164-L209]

	Generate the Banana dataset.

	Parameters

	
	size_classeslist with the number of samples for each class.

	

	nafloat (Default = 0.2),

	Noise amplitude. It must be < 1.0

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	
	Xarray of shape = [size_classes, 2]

	The generated data points.

	yarray of shape = [size_classes]

	Class labels associated with each class.

References

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

	
deslib.util.datasets.make_banana2(size_classes, sigma=1, random_state=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/datasets.py#L212-L263]

	Generate the Banana dataset similar to the Matlab PRTools toolbox.

	Parameters

	
	size_classeslist with the number of samples for each class.

	

	sigmafloat (Default = 1),

	variance of the normal distribution

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	
	Xarray of shape = [size_classes, 2]

	The generated data points.

	yarray of shape = [size_classes]

	Class labels associated with each class.

References

R.P.W. Duin, P. Juszczak, D.de Ridder, P. Paclik, E. Pekalska, D.M.Tax,
Prtools, a matlab toolbox for
pattern recognition, 2004. URL 〈http://www.prtools.org〉.

	
deslib.util.datasets.make_circle_square(size_classes, random_state=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/datasets.py#L108-L161]

	Generate the circle square dataset.

	Parameters

	
	size_classeslist with the number of samples for each class.

	

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	
	Xarray of shape = [size_classes, 2]

	The generated data points.

	yarray of shape = [size_classes]

	Class labels associated with each class.

References

P. Henniges, E. Granger, R. Sabourin, Factors of overtraining
with fuzzy artmap neural networks, International Joint Conference
on Neural Networks (2005) 1075–1080.

	
deslib.util.datasets.make_xor(n_samples, random_state=None)[source] [https://github.com/scikit-learn-contrib/DESlib/blob/v0.3.5/deslib/util/datasets.py#L266-L293]

	Generate the exclusive-or (XOR) dataset.

	Parameters

	
	n_samplesint

	Number of generated data points.

	random_stateint, RandomState instance or None, optional (default=None)

	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	
	Xarray of shape = [size_classes, 2]

	The generated data points.

	yarray of shape = [size_classes]

	Class labels associated with each class.

General examples

Examples showing how to use different aspect of the library

[image: Simple example]

Simple example

[image: Measuring the influence of the region of competence]

Measuring the influence of the region of competence

[image: Dynamic selection vs K-NN: Using instance hardness]

Dynamic selection vs K-NN: Using instance hardness

[image: Calibrating base classifiers to estimate probabilities]

Calibrating base classifiers to estimate probabilities

[image: Using the Dynamic Frienemy Pruning (DFP)]

Using the Dynamic Frienemy Pruning (DFP)

[image: Comparing dynamic selection with baseline static methods]

Comparing dynamic selection with baseline static methods

[image: Comparing dynamic selection with Random Forest]

Comparing dynamic selection with Random Forest

[image: Example using heterogeneous ensemble]

Example using heterogeneous ensemble

[image: Dynamic selection with linear classifiers: XOR example]

Dynamic selection with linear classifiers: XOR example

[image: Visualizing decision boundaries on the P2 problem]

Visualizing decision boundaries on the P2 problem

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Simple example

In this example we show how to apply different DCS and DES techniques for a
classification dataset.

import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from deslib.des import METADES
from deslib.des import KNORAE

Setting up the random state to have consistent results
rng = np.random.RandomState(42)

Generate a classification dataset
X, y = make_classification(n_samples=1000, random_state=rng)
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
 random_state=rng)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
 test_size=0.5,
 random_state=rng)

Initialize the DS techniques. DS methods can be initialized without
specifying a single input parameter. In this example, we just pass the random
state in order to always have the same result.
kne = KNORAE(random_state=rng)
meta = METADES(random_state=rng)

Fitting the des techniques
kne.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Calculate classification accuracy of each technique
print('Evaluating DS techniques:')
print('Classification accuracy KNORA-Eliminate: ',
 kne.score(X_test, y_test))
print('Classification accuracy META-DES: ', meta.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: simple_example.py

Download Jupyter notebook: simple_example.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Measuring the influence of the region of competence

This example shows how the size of the region of competence (parameter k)
can influence the final performance of DS techniques.

In this example we vary the value of the parameter k from 3 to 15 and measure
the performance of 7 different dynamic selection technique using the same
pool of classifiers.

Let’s start by importing all required modules. In this example we use the
new sklearn-OpenML interface to fetch the diabetes classification problem.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from deslib.dcs import LCA
DCS techniques
from deslib.dcs import MCB
from deslib.dcs import OLA
from deslib.dcs import Rank
DES techniques
from deslib.des import DESP
from deslib.des import KNORAE
from deslib.des import KNORAU

rng = np.random.RandomState(123456)

data = fetch_openml(name='diabetes', cache=False, as_frame=False)
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)

Normalizing the dataset to have 0 mean and unit variance.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

pool_classifiers = BaggingClassifier(Perceptron(max_iter=100),
 random_state=rng)
pool_classifiers.fit(X_train, y_train)

Setting with_IH
mcb = MCB(pool_classifiers, random_state=rng)
ola = OLA(pool_classifiers)
des_p = DESP(pool_classifiers)
knu = KNORAU(pool_classifiers)
lca = LCA(pool_classifiers)
kne = KNORAE(pool_classifiers)
rank = Rank(pool_classifiers)
list_ds_methods = [mcb, ola, des_p, knu, lca, kne, rank]
names = ['MCB', 'OLA', 'DES-P', 'KNORA-U', 'LCA', 'KNORA-E', 'Rank']

k_value_list = range(3, 16)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/deslib/envs/v0.3.5/lib/python3.6/site-packages/sklearn/datasets/_openml.py:407: UserWarning: Multiple active versions of the dataset matching the name diabetes exist. Versions may be fundamentally different, returning version 1.
 " {version}.".format(name=name, version=res[0]['version']))

Plot accuracy x region of competence size.

We can see the this parameter can have a huge influence in the performance
of certain DS techniques. The main exception being the KNORA-E and Rank
which have built-in mechanism to automatically adjust the region
of competence size during the competence level estimation.

fig, ax = plt.subplots()
for ds_method, name in zip(list_ds_methods, names):
 accuracy = []
 for k in k_value_list:
 ds_method.k = k
 ds_method.fit(X_train, y_train)
 accuracy.append(ds_method.score(X_test, y_test))
 ax.plot(k_value_list, accuracy, label=name)

plt.xticks(k_value_list)
ax.set_ylim(0.60, 0.80)
ax.set_xlabel('Region of competence size (K value)', fontsize=13)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.legend(loc='lower right')
plt.show()

[image: plot influence k value]Total running time of the script: (0 minutes 17.253 seconds)

Download Python source code: plot_influence_k_value.py

Download Jupyter notebook: plot_influence_k_value.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Dynamic selection vs K-NN: Using instance hardness

One aspect about dynamic selection techniques is that it can better deal with
the classification of test examples associated with high degree of instance
hardness. Such examples are often found close to the border of the classes,
with the majority of its neighbors belonging to different classes.
On the other hand, the KNN method, which is often used to estimate the region
of competence in DS methods works better in the classification of examples
associated with low instance hardness [1].

DESlib already implements a switch mechanism between DS techniques and the KNN
classifier according to the hardness level of an instance. This example
varies the threshold in which KNN is used for classification instead of DS
methods. It also compares the classification results with the standard KNN
as a baseline.

The switch mechanism also reduces the computational cost involved since only
part of the test samples are classified by the DS method.

References

[1] Cruz, Rafael MO, et al. “Dynamic Ensemble Selection VS K-NN: why and
when Dynamic Selection obtains higher classification performance?.”
arXiv preprint arXiv:1804.07882 (2018).

Let’s start by importing all required modules. In this example we use the
new sklearn-OpenML interface to fetch the diabetes classification problem.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier

from deslib.dcs import MCB
from deslib.dcs import OLA
from deslib.dcs import Rank
from deslib.des import DESP
from deslib.des import KNORAE
from deslib.des import KNORAU

rng = np.random.RandomState(123456)

data = fetch_openml(name='diabetes', cache=False, as_frame=False)
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)

Normalizing the dataset to have 0 mean and unit variance.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Training a pool of classifiers using the bagging technique.
pool_classifiers = BaggingClassifier(DecisionTreeClassifier(random_state=rng),
 random_state=rng)
pool_classifiers.fit(X_train, y_train)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/deslib/envs/v0.3.5/lib/python3.6/site-packages/sklearn/datasets/_openml.py:407: UserWarning: Multiple active versions of the dataset matching the name diabetes exist. Versions may be fundamentally different, returning version 1.
 " {version}.".format(name=name, version=res[0]['version']))

BaggingClassifier(base_estimator=DecisionTreeClassifier(random_state=RandomState(MT19937) at 0x7F5C0FDAA570),
 random_state=RandomState(MT19937) at 0x7F5C0FDAA570)

Setting DS method to use the switch mechanism

In order to activate the functionality to switch between DS and KNN according
to the instance hardness level we need to set the DS techniques to use this
information. This is done by setting the hyperparameter with_IH to True.
In this example we consider four different values for te threshold

mcb = MCB(pool_classifiers, with_IH=True, random_state=rng)
ola = OLA(pool_classifiers, with_IH=True, random_state=rng)
rank = Rank(pool_classifiers, with_IH=True, random_state=rng)
des_p = DESP(pool_classifiers, with_IH=True, random_state=rng)
kne = KNORAE(pool_classifiers, with_IH=True, random_state=rng)
knu = KNORAU(pool_classifiers, with_IH=True, random_state=rng)
list_ih_values = [0.0, 1./7., 2./7., 3./7.]

list_ds_methods = [method.fit(X_train, y_train) for method in
 [mcb, ola, rank, des_p, kne, knu]]
names = ['MCB', 'OLA', 'Mod. Rank', 'DES-P', 'KNORA-E', 'KNORA-U']

Plot accuracy x IH
fig, ax = plt.subplots()
for ds_method, name in zip(list_ds_methods, names):
 accuracy = []
 for idx_ih, ih_rate in enumerate([0.0, 0.14, 0.28, 0.42]):
 ds_method.IH_rate = ih_rate
 accuracy.append(ds_method.score(X_test, y_test))
 ax.plot(list_ih_values, accuracy, label=name)

plt.xticks(list_ih_values)
ax.set_ylim(0.65, 0.80)
ax.set_xlabel('IH value', fontsize=13)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.legend()

plt.show()

[image: plot using instance hardness]Total running time of the script: (0 minutes 9.403 seconds)

Download Python source code: plot_using_instance_hardness.py

Download Jupyter notebook: plot_using_instance_hardness.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Calibrating base classifiers to estimate probabilities

In this example we show how to apply different DCS and DES techniques for a
classification dataset.

A very important aspect in dynamic selection is the generation of a pool
of classifiers. A common practice in the dynamic selection literature is to
use the Bagging (Bootstrap Aggregating) method to generate a pool containing
base classifiers that are both diverse and informative.

In this example we generate a pool of classifiers using the Bagging technique
implemented on the Scikit-learn library. Then, we compare the results obtained
by combining this pool of classifiers using the standard Bagging combination
approach versus the application of dynamic selection technique to select the
set of most competent classifiers

import numpy as np
from sklearn.calibration import CalibratedClassifierCV
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from deslib.dcs.a_priori import APriori
from deslib.dcs.mcb import MCB
from deslib.dcs.ola import OLA
from deslib.des.des_p import DESP
from deslib.des.knora_e import KNORAE
from deslib.des.knora_u import KNORAU
from deslib.des.meta_des import METADES

Preparing the dataset

In this part we load the breast cancer dataset from scikit-learn and
preprocess it in order to pass to the DS models. An important point here is
to normalize the data so that it has zero mean and unit variance, which is
a common requirement for many machine learning algorithms.
This step can be easily done using the StandardScaler class.

rng = np.random.RandomState(123)
data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
 random_state=rng)

Scale the variables to have 0 mean and unit variance
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
 test_size=0.5,
 random_state=rng)

Train a pool of 100 base classifiers
pool_classifiers = BaggingClassifier(Perceptron(max_iter=10),
 n_estimators=100, random_state=rng)
pool_classifiers.fit(X_train, y_train)

Initialize the DS techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers, random_state=rng)

Calibrating base classifiers

Some dynamic selection techniques requires that the base classifiers estimate
probabilities in order to estimate its competence level. Since the Perceptron
model is not a probabilistic classifier (does not implements the
predict_proba method, it needs to be calibrated for
probability estimation before being used by such DS techniques. This step can
be conducted using the CalibrateClassifierCV class from scikit-learn. Note
that in this example we pass a prefited pool of classifiers to the
calibration method in order to use exactly the same pool used in the other
DS methods.

calibrated_pool = []
for clf in pool_classifiers:
 calibrated = CalibratedClassifierCV(base_estimator=clf, cv='prefit')
 calibrated.fit(X_dsel, y_dsel)
 calibrated_pool.append(calibrated)

apriori = APriori(calibrated_pool, random_state=rng)
meta = METADES(calibrated_pool)

knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
apriori.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Evaluating the methods

Let’s now evaluate the methods on the test set. We also use the performance
of Bagging (pool of classifiers without any selection) as a baseline
comparison. We can see that the majority of DS methods achieve higher
classification accuracy.

print('Evaluating DS techniques:')
print('Classification accuracy KNORA-Union: ',
 knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ',
 kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy MCB: ', mcb.score(X_test, y_test))
print('Classification accuracy META-DES: ', meta.score(X_test, y_test))
print('Classification accuracy Bagging: ',
 pool_classifiers.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_calibrating_classifiers.py

Download Jupyter notebook: example_calibrating_classifiers.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Using the Dynamic Frienemy Pruning (DFP)

In this example we show how to apply the dynamic frienemy pruning (DFP) to
different dynamic selection techniques.

The DFP method is an online pruning model which analyzes the region
of competence to know if it is composed of samples from different classes
(indecision region). Then, it remove the base classifiers that do not correctly
classifies at least a pair of samples coming from different classes, i.e., the
base classifiers that cannot separate the classes in the local region.
More information on this method can be found in refs [1] and [2].

DES techniques using the DFP algorithm are called FIRE-DES (Frienemy Indecision
REgion Dynamic Ensemble Selection).
The FIRE-DES is shown to significantly improve the performance of several
dynamic selection algorithms when dealing with imbalanced classification
problems as it avoids the classifiers that are biased towards the majority
class in predicting the label for the query.

References

[1] Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., “Online Pruning
of Base Classifiers for Dynamic Ensemble Selection”, Pattern Recognition,
vol. 72, 2017, pp 44-58.

[2] Cruz, R.M.O., Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R.,
“FIRE-DES++: Enhanced online pruning of base classifiers for dynamic ensemble
selection”., Pattern Recognition, vol. 85, 2019, pp 149-160.

import numpy as np
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
from deslib.dcs import APosteriori
from deslib.dcs import APriori
from deslib.dcs import LCA
from deslib.dcs import OLA
from deslib.des import DESP
from deslib.des import METADES

rng = np.random.RandomState(654321)

Generate an imbalanced classification dataset
X, y = make_classification(n_classes=2, n_samples=2000, weights=[0.05, 0.95],
 random_state=rng)
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
 random_state=rng)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
 test_size=0.5,
 random_state=rng)
Considering a pool composed of 10 base classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10, random_state=rng,
 max_depth=10)
pool_classifiers.fit(X_train, y_train)

ds_names = ['A Priori', 'A Posteriori', 'OLA', 'LCA', 'DES-P', 'META-DES']

DS techniques without DFP
apriori = APriori(pool_classifiers, random_state=rng)
aposteriori = APosteriori(pool_classifiers, random_state=rng)
ola = OLA(pool_classifiers)
lca = LCA(pool_classifiers)
desp = DESP(pool_classifiers)
meta = METADES(pool_classifiers)

FIRE-DS techniques (with DFP)
fire_apriori = APriori(pool_classifiers, DFP=True, random_state=rng)
fire_aposteriori = APosteriori(pool_classifiers, DFP=True, random_state=rng)
fire_ola = OLA(pool_classifiers, DFP=True)
fire_lca = LCA(pool_classifiers, DFP=True)
fire_desp = DESP(pool_classifiers, DFP=True)
fire_meta = METADES(pool_classifiers, DFP=True)

list_ds = [apriori, aposteriori, ola, lca, desp, meta]
list_fire_ds = [fire_apriori, fire_aposteriori, fire_ola,
 fire_lca, fire_desp, fire_meta]

scores_ds = []
for ds in list_ds:
 ds.fit(X_dsel, y_dsel)
 scores_ds.append(roc_auc_score(y_test, ds.predict(X_test)))

scores_fire_ds = []
for fire_ds in list_fire_ds:
 fire_ds.fit(X_dsel, y_dsel)
 scores_fire_ds.append(roc_auc_score(y_test, fire_ds.predict(X_test)))

Comparing DS techniques with FIRE-DES techniques

Let’s now evaluate the DES methods on the test set. Since we are dealing with
imbalanced data, we use the area under the roc curve (AUC) as performance
metric instead of classification accuracy. The AUC can be easily calculated
using the sklearn.metrics.roc_auc_score function from scikit-learn.

width = 0.35
ind = np.arange(len(ds_names))
plt.bar(ind, scores_ds, width, label='DES', edgecolor='k')
plt.bar(ind + width, scores_fire_ds, width, label='FIRE-DES', edgecolor='k')

plt.ylabel('Area under the roc curve (AUC)')
plt.title('AUC Performance: DS vs FIRE-DES')
plt.ylim((0.60, 0.81))
plt.xticks(ind + width / 2, ds_names)
plt.legend(loc='best')
plt.show()

[image: AUC Performance: DS vs FIRE-DES]Total running time of the script: (0 minutes 2.298 seconds)

Download Python source code: plot_example_DFP.py

Download Jupyter notebook: plot_example_DFP.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Comparing dynamic selection with baseline static methods

In this example we compare the performance of DS techinques with the
static ensemble methods. DESlib offer the implementation of static ensemble
methods in the deslib.static module. The following techniques are
considered:

Static methods used as baseline comparison are in the deslib.static module.
They are:

Majority Voting: The outputs of all base classifiers in the pool are combined
using the majority voting rule

Static Selection: A fraction of the best performing classifiers (based on the
validation data, is selected to compose the ensemble).

Single Best: The base classifier with the highest classification accuracy in
the validation set is selected for classification

Stacked classifier: The outputs of all base classifiers are passed down to
a meta-estimator which combines the . The meta-estimator is trained based
on the outputs of the base classifiers on the training data.

These techniques are used in the dynamic selection literature as a baseline
comparison (for more information see references [1] and [2])

At the end we also present the result of the Oracle, which is an abastract
model which always selects the base classifier that predicted the correct label
if such classifier exists. From the dynamic selection point of view, the Oracle
is seen as the upper limit performance that can be achieved with the given
pool of classifiers.

References

[1] Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection
of classifiers—a comprehensive review.” Pattern Recognition 47.11
(2014): 3665-3680.

[2] R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier
selection: Recent advances and perspectives,” Information Fusion,
vol. 41, pp. 195 – 216, 2018.

	[3] Kuncheva, Ludmila I. “A theoretical study on six classifier fusion

	strategies.” IEEE Transactions on Pattern Analysis & Machine Intelligence,
(2002): 281-286.

import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
from matplotlib.cm import get_cmap
import numpy as np

Example of a dcs techniques
from deslib.dcs import OLA
from deslib.dcs import MCB
from deslib.des import DESP
from deslib.des import KNORAU
from deslib.des.knora_e import KNORAE
from deslib.des import KNOP
from deslib.des import METADES

from sklearn.datasets import make_classification
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
Example of a des techniques

Example of stacked model
from deslib.static import (StackedClassifier,
 SingleBest,
 StaticSelection,
 Oracle)

rng = np.random.RandomState(123)

Generate a classification dataset
X, y = make_classification(n_samples=2000,
 n_classes=3,
 n_informative=6,
 random_state=rng)

split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
 random_state=rng)

X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
 test_size=0.50,
 random_state=rng)

pool_classifiers = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
 n_estimators=100,
 random_state=rng)
pool_classifiers.fit(X_train, y_train)

Setting up static methods.
stacked = StackedClassifier(pool_classifiers)
static_selection = StaticSelection(pool_classifiers)
single_best = SingleBest(pool_classifiers)

Initialize a DS technique. Here we specify the size of
the region of competence (5 neighbors)
knorau = KNORAU(pool_classifiers, random_state=rng)
kne = KNORAE(pool_classifiers, random_state=rng)
desp = DESP(pool_classifiers, random_state=rng)
ola = OLA(pool_classifiers, random_state=rng)
mcb = MCB(pool_classifiers, random_state=rng)
knop = KNOP(pool_classifiers, random_state=rng)
meta = METADES(pool_classifiers, random_state=rng)

names = ['Single Best', 'Static Selection', 'Stacked',
 'KNORA-U', 'KNORA-E', 'DES-P', 'OLA', 'MCB', 'KNOP', 'META-DES']

methods = [single_best, static_selection, stacked,
 knorau, kne, desp, ola, mcb, knop, meta]

Fit the DS techniques
scores = []
for method, name in zip(methods, names):
 method.fit(X_dsel, y_dsel)
 scores.append(method.score(X_test, y_test))
 print("Classification accuracy {} = {}"
 .format(name, method.score(X_test, y_test)))

Out:

Classification accuracy Single Best = 0.774
Classification accuracy Static Selection = 0.834
Classification accuracy Stacked = 0.804
Classification accuracy KNORA-U = 0.838
Classification accuracy KNORA-E = 0.83
Classification accuracy DES-P = 0.838
Classification accuracy OLA = 0.802
Classification accuracy MCB = 0.83
Classification accuracy KNOP = 0.84
Classification accuracy META-DES = 0.862

Plotting the results

Let’s now evaluate the methods on the test set.

cmap = get_cmap('Dark2')
colors = [cmap(i) for i in np.linspace(0, 1, 10)]
fig, ax = plt.subplots(figsize=(8, 6.5))
pct_formatter = FuncFormatter(lambda x, pos: '{:.1f}'.format(x * 100))
ax.bar(np.arange(len(methods)),
 scores,
 color=colors,
 tick_label=names,
 edgecolor='k')

ax.set_ylim(0.70, 0.86)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.yaxis.set_major_formatter(pct_formatter)
for tick in ax.get_xticklabels():
 tick.set_rotation(60)
plt.subplots_adjust(bottom=0.18)

plt.show()

[image: plot comparing dynamic static]

The Oracle results

OracleAbstract method that always selects the base classifier that predicts
the correct label if such classifier exists. This method is often used to
measure the upper-limit performance that can be achieved by a dynamic
classifier selection technique. It is used as a benchmark by several
dynamic selection algorithms. We can see the Oracle performance is close
to 100%, which is an almost 15% gap to the best performing method.

oracle = Oracle(pool_classifiers).fit(X_train, y_train)
print('Oracle result: {}' .format(oracle.score(X_test, y_test)))

Out:

Oracle result: 0.998

Total running time of the script: (0 minutes 5.528 seconds)

Download Python source code: plot_comparing_dynamic_static.py

Download Jupyter notebook: plot_comparing_dynamic_static.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Comparing dynamic selection with Random Forest

In this example we use a pool of classifiers generated using the Random Forest
method rather than Bagging. We also show how to change the size of the region
of competence, used to estimate the local competence of the base classifiers.

This demonstrates that the library accepts any kind of base classifiers as
long as they implement the predict and predict proba functions. Moreover,
any ensemble generation method such as Boosting or Rotation Trees can be used
to generate a pool containing diverse base classifiers. We also included the
performance of the RandomForest classifier as a baseline comparison.

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cm import get_cmap
from matplotlib.ticker import FuncFormatter
from sklearn.datasets import fetch_openml
Pool of base classifiers
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

from deslib.dcs.mcb import MCB
Example of a dcs techniques
from deslib.dcs.ola import OLA
Example of a des techniques
from deslib.des.des_p import DESP
from deslib.des.knora_e import KNORAE
from deslib.des.knora_u import KNORAU
from deslib.des.meta_des import METADES
Example of stacked model
from deslib.static.stacked import StackedClassifier

rng = np.random.RandomState(42)

Fetch a classification dataset from OpenML
data = fetch_openml(name='credit-g', cache=False, as_frame=False)
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
 random_state=rng)
RF = RandomForestClassifier(random_state=rng)
RF.fit(X_train, y_train)

X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
 test_size=0.50,
 random_state=rng)

Training a random forest to be used as the pool of classifiers.
We set the maximum depth of the tree so that it
can estimate probabilities
pool_classifiers = RandomForestClassifier(n_estimators=100, max_depth=5,
 random_state=rng)
pool_classifiers.fit(X_train, y_train)

stacked = StackedClassifier(pool_classifiers, LogisticRegression())
stacked.fit(X_dsel, y_dsel)

Initialize a DS technique. Here we specify the size of
the region of competence (5 neighbors)
knorau = KNORAU(pool_classifiers, random_state=rng)
kne = KNORAE(pool_classifiers, k=5, random_state=rng)
desp = DESP(pool_classifiers, k=5, random_state=rng)
ola = OLA(pool_classifiers, k=5, random_state=rng)
mcb = MCB(pool_classifiers, k=5, random_state=rng)
meta = METADES(pool_classifiers, k=5, random_state=rng)

Fit the DS techniques
knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/deslib/envs/v0.3.5/lib/python3.6/site-packages/sklearn/datasets/_openml.py:407: UserWarning: Multiple active versions of the dataset matching the name credit-g exist. Versions may be fundamentally different, returning version 1.
 " {version}.".format(name=name, version=res[0]['version']))

MCB(k=5,
 pool_classifiers=RandomForestClassifier(max_depth=5,
 random_state=RandomState(MT19937) at 0x7F5C0FDAA888),
 random_state=RandomState(MT19937) at 0x7F5C0FDAA888)

Plotting the results

Let’s now evaluate the methods on the test set.

rf_score = RF.score(X_test, y_test)
stacked_score = stacked.score(X_test, y_test)
knorau_score = knorau.score(X_test, y_test)
kne_score = kne.score(X_test, y_test)
desp_score = desp.score(X_test, y_test)
ola_score = ola.score(X_test, y_test)
mcb_score = mcb.score(X_test, y_test)
meta_score = meta.score(X_test, y_test)
print('Classification accuracy RF: ', rf_score)
print('Classification accuracy Stacked: ', stacked_score)
print('Evaluating DS techniques:')
print('Classification accuracy KNORA-U: ', knorau_score)
print('Classification accuracy KNORA-E: ', kne_score)
print('Classification accuracy DESP: ', desp_score)
print('Classification accuracy OLA: ', ola_score)
print('Classification accuracy MCB: ', mcb_score)
print('Classification accuracy META-DES: ', meta_score)

cmap = get_cmap('Dark2')
colors = [cmap(i) for i in np.linspace(0, 1, 7)]
labels = ['RF', 'Stacked', 'KNORA-U', 'KNORA-E', 'DESP', 'OLA', 'MCB',
 'META-DES']

fig, ax = plt.subplots()
pct_formatter = FuncFormatter(lambda x, pos: '{:.1f}'.format(x * 100))
ax.bar(np.arange(8),
 [rf_score, stacked_score, knorau_score, kne_score, desp_score,
 ola_score, mcb_score, meta_score],
 color=colors,
 tick_label=labels)
ax.set_ylim(0.65, 0.80)
ax.set_xlabel('Method', fontsize=13)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.yaxis.set_major_formatter(pct_formatter)
for tick in ax.get_xticklabels():
 tick.set_rotation(45)
plt.subplots_adjust(bottom=0.15)
plt.show()

[image: plot random forest]Out:

Classification accuracy RF: 0.76
Classification accuracy Stacked: 0.736
Evaluating DS techniques:
Classification accuracy KNORA-U: 0.724
Classification accuracy KNORA-E: 0.708
Classification accuracy DESP: 0.728
Classification accuracy OLA: 0.724
Classification accuracy MCB: 0.664
Classification accuracy META-DES: 0.732

Total running time of the script: (0 minutes 8.467 seconds)

Download Python source code: plot_random_forest.py

Download Jupyter notebook: plot_random_forest.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Example using heterogeneous ensemble

DESlib accepts different classifier models in the pool of classifiers.
Such pool of classifiers is called Heterogeneous.

In this example, we consider a pool of classifiers composed of a
Gaussian Naive Bayes, Perceptron, k-NN, Decision tree and Gaussian SVM. We
also compare the result of DS methods with the voting classifier from sklearn.

import numpy as np
from sklearn.calibration import CalibratedClassifierCV
Importing dataset and preprocessing routines
from sklearn.datasets import fetch_openml
from sklearn.ensemble import VotingClassifier
Base classifier models:
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier

from deslib.dcs import MCB
Example of DCS techniques
from deslib.dcs import OLA
from deslib.des import DESP
Example of DES techniques
from deslib.des import KNORAE
from deslib.des import KNORAU
from deslib.des import METADES
from deslib.static import StackedClassifier

rng = np.random.RandomState(42)
data = fetch_openml(name='australian', cache=False, as_frame=False)
X = data.data
y = data.target

split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
 random_state=rng)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
 test_size=0.5,
 random_state=rng)

model_perceptron = CalibratedClassifierCV(Perceptron(max_iter=100,
 random_state=rng),
 cv=3)

model_perceptron.fit(X_train, y_train)
model_svc = SVC(probability=True, gamma='auto',
 random_state=rng).fit(X_train, y_train)
model_bayes = GaussianNB().fit(X_train, y_train)
model_tree = DecisionTreeClassifier(random_state=rng).fit(X_train, y_train)
model_knn = KNeighborsClassifier(n_neighbors=1).fit(X_train, y_train)

pool_classifiers = [model_perceptron,
 model_svc,
 model_bayes,
 model_tree,
 model_knn]

voting_classifiers = [("perceptron", model_perceptron),
 ("svc", model_svc),
 ("bayes", model_bayes),
 ("tree", model_tree),
 ("knn", model_knn)]

model_voting = VotingClassifier(estimators=voting_classifiers).fit(
 X_train, y_train)

Initializing the techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
metades = METADES(pool_classifiers, mode='hybrid')
DCS techniques
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers)

Adding stacked classifier as baseline comparison. Stacked classifier can
be found in the static module. In this experiment we consider two types
of stacking: one using logistic regression as meta-classifier
(default configuration) and the other using a Decision Tree.

stacked_lr = StackedClassifier(pool_classifiers, random_state=rng)
stacked_dt = StackedClassifier(pool_classifiers,
 random_state=rng,
 meta_classifier=DecisionTreeClassifier())
Fitting the DS techniques
knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
metades.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)

Fitting the tacking models
stacked_lr.fit(X_dsel, y_dsel)
stacked_dt.fit(X_dsel, y_dsel)

Calculate classification accuracy of each technique
print('Evaluating DS techniques:')
print('Classification accuracy of Majority voting the pool: ',
 model_voting.score(X_test, y_test))
print('Classification accuracy of KNORA-U: ', knorau.score(X_test, y_test))
print('Classification accuracy of KNORA-E: ', kne.score(X_test, y_test))
print('Classification accuracy of DESP: ', desp.score(X_test, y_test))
print('Classification accuracy of META-DES: ', metades.score(X_test, y_test))
print('Classification accuracy of OLA: ', ola.score(X_test, y_test))
print('Classification accuracy Stacking LR', stacked_lr.score(X_test, y_test))
print('Classification accuracy Stacking DT', stacked_dt.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_heterogeneous.py

Download Jupyter notebook: example_heterogeneous.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Dynamic selection with linear classifiers: XOR example

This example shows that DS can deal with non-linear problem (XOR) using
a combination of a few linear base classifiers.

	10 dynamic selection methods (5 DES and 5 DCS) are evaluated with
a pool composed of Decision stumps.

	Since we use Bagging to generate the base classifiers, we also
included its performance as a baseline comparison.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from deslib.dcs import LCA
from deslib.dcs import MLA
from deslib.dcs import OLA
from deslib.dcs import MCB
from deslib.dcs import Rank

from deslib.des import DESKNN
from deslib.des import KNORAE
from deslib.des import KNORAU
from deslib.des import KNOP
from deslib.des import METADES
from deslib.util.datasets import make_xor

Defining helper functions to facilitate plotting the decision boundaries:

def plot_classifier_decision(ax, clf, X, mode='line', **params):

 xx, yy = make_grid(X[:, 0], X[:, 1])

 Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 if mode == 'line':
 ax.contour(xx, yy, Z, **params)
 else:
 ax.contourf(xx, yy, Z, **params)
 ax.set_xlim((np.min(X[:, 0]), np.max(X[:, 0])))
 ax.set_ylim((np.min(X[:, 1]), np.max(X[:, 0])))

def plot_dataset(X, y, ax=None, title=None, **params):

 if ax is None:
 ax = plt.gca()
 ax.scatter(X[:, 0], X[:, 1], marker='o', c=y, s=25,
 edgecolor='k', **params)
 ax.set_xlabel('Feature 1')
 ax.set_ylabel('Feature 2')
 if title is not None:
 ax.set_title(title)
 return ax

def make_grid(x, y, h=.02):

 x_min, x_max = x.min() - 1, x.max() + 1
 y_min, y_max = y.min() - 1, y.max() + 1
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))
 return xx, yy

Prepare the DS techniques. Changing k value to 5.
def initialize_ds(pool_classifiers, X, y, k=5):
 knorau = KNORAU(pool_classifiers, k=k)
 kne = KNORAE(pool_classifiers, k=k)
 desknn = DESKNN(pool_classifiers, k=k)
 ola = OLA(pool_classifiers, k=k)
 lca = LCA(pool_classifiers, k=k)
 mla = MLA(pool_classifiers, k=k)
 mcb = MCB(pool_classifiers, k=k)
 rank = Rank(pool_classifiers, k=k)
 knop = KNOP(pool_classifiers, k=k)
 meta = METADES(pool_classifiers, k=k)

 list_ds = [knorau, kne, ola, lca, mla, desknn, mcb, rank, knop, meta]
 names = ['KNORA-U', 'KNORA-E', 'OLA', 'LCA', 'MLA', 'DESKNN', 'MCB',
 'RANK', 'KNOP', 'META-DES']
 # fit the ds techniques
 for ds in list_ds:
 ds.fit(X, y)

 return list_ds, names

Generating the dataset and training the pool of classifiers.

rng = np.random.RandomState(1234)
X, y = make_xor(1000, random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,
 random_state=rng)
X_DSEL, X_test, y_DSEL, y_test = train_test_split(X_train, y_train,
 test_size=0.5,
 random_state=rng)

pool_classifiers = BaggingClassifier(DecisionTreeClassifier(max_depth=1),
 n_estimators=10,
 random_state=rng)
pool_classifiers.fit(X_train, y_train)

Out:

BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=1),
 random_state=RandomState(MT19937) at 0x7F5C0FDAA780)

Merging training and validation data to compose DSEL

In this example merge the training data with the validation, to create a
DSEL having more examples for the competence estimation. Using the training
data for dynamic selection can be beneficial when dealing with small sample
size datasets. However, in this case we need to have a pool composed of weak
classifier so that the base classifiers are not able to memorize the
training data (overfit).

X_DSEL = np.vstack((X_DSEL, X_train))
y_DSEL = np.hstack((y_DSEL, y_train))
list_ds, names = initialize_ds(pool_classifiers, X_DSEL, y_DSEL, k=7)

fig, sub = plt.subplots(4, 3, figsize=(13, 10))
plt.subplots_adjust(wspace=0.4, hspace=0.4)

ax_data = sub.flatten()[0]
ax_bagging = sub.flatten()[1]
plot_dataset(X_train, y_train, ax=ax_data, title="Training data")

plot_dataset(X_train, y_train, ax=ax_bagging)
plot_classifier_decision(ax_bagging, pool_classifiers,
 X_train, mode='filled', alpha=0.4)
ax_bagging.set_title("Bagging")

Plotting the decision border of the DS methods
for ds, name, ax in zip(list_ds, names, sub.flatten()[2:]):
 plot_dataset(X_train, y_train, ax=ax)
 plot_classifier_decision(ax, ds, X_train, mode='filled', alpha=0.4)
 ax.set_xlim((np.min(X_train[:, 0]) - 0.1, np.max(X_train[:, 0] + 0.1)))
 ax.set_ylim((np.min(X_train[:, 1]) - 0.1, np.max(X_train[:, 1] + 0.1)))
 ax.set_title(name)
plt.show()
plt.tight_layout()

[image: Training data, Bagging, KNORA-U, KNORA-E, OLA, LCA, MLA, DESKNN, MCB, RANK, KNOP, META-DES]

Evaluation on the test set

Finally, let’s evaluate the classification accuracy of DS techniques and
Bagging on the test set:

for ds, name in zip(list_ds, names):
 print('Accuracy ' + name + ': ' + str(ds.score(X_test, y_test)))
print('Accuracy Bagging: ' + str(pool_classifiers.score(X_test, y_test)))

Out:

Accuracy KNORA-U: 0.92
Accuracy KNORA-E: 0.992
Accuracy OLA: 0.976
Accuracy LCA: 0.944
Accuracy MLA: 0.944
Accuracy DESKNN: 0.908
Accuracy MCB: 0.968
Accuracy RANK: 0.992
Accuracy KNOP: 0.636
Accuracy META-DES: 0.928
Accuracy Bagging: 0.584

Total running time of the script: (0 minutes 21.018 seconds)

Download Python source code: plot_xor_example.py

Download Jupyter notebook: plot_xor_example.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Visualizing decision boundaries on the P2 problem

This example shows the power of dynamic selection (DS) techniques which can
solve complex non-linear classification near classifiers. It also compares
the performance of DS techniques with some baseline classification methods
such as Random Forests, AdaBoost and SVMs.

The P2 is a two-class problem, presented by Valentini, in which each class
is defined in multiple decision regions delimited by polynomial and
trigonometric functions:

\[\begin{split}\begin{eqnarray}
\label{eq:problem1}
E1(x) = sin(x) + 5 \\
\label{eq:problem2}
E2(x) = (x - 2)^{2} + 1 \\
\label{eq:problem3}
E3(x) = -0.1 \cdot x^{2} + 0.6sin(4x) + 8 \\
\label{eq:problem4}
E4(x) = \frac{(x - 10)^{2}}{2} + 7.902
\end{eqnarray}\end{split}\]

It is impossible to solve this problem
using a single linear classifier. The performance of the best possible
linear classifier is around 50%.

Let’s start by importing all required modules, and defining helper functions
to facilitate plotting the decision boundaries:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier

Importing DS techniques
from deslib.dcs.ola import OLA
from deslib.dcs.rank import Rank
from deslib.des.des_p import DESP
from deslib.des.knora_e import KNORAE
from deslib.static import StackedClassifier
from deslib.util.datasets import make_P2

Plotting-related functions
def make_grid(x, y, h=.02):
 x_min, x_max = x.min() - 1, x.max() + 1
 y_min, y_max = y.min() - 1, y.max() + 1
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 np.arange(y_min, y_max, h))
 return xx, yy

def plot_classifier_decision(ax, clf, X, mode='line', **params):
 xx, yy = make_grid(X[:, 0], X[:, 1])

 Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 if mode == 'line':
 ax.contour(xx, yy, Z, **params)
 else:
 ax.contourf(xx, yy, Z, **params)
 ax.set_xlim((np.min(X[:, 0]), np.max(X[:, 0])))
 ax.set_ylim((np.min(X[:, 1]), np.max(X[:, 0])))

def plot_dataset(X, y, ax=None, title=None, **params):
 if ax is None:
 ax = plt.gca()
 ax.scatter(X[:, 0], X[:, 1], marker='o', c=y, s=25,
 edgecolor='k', **params)
 ax.set_xlabel('Feature 1')
 ax.set_ylabel('Feature 2')
 if title is not None:
 ax.set_title(title)
 return ax

Visualizing the dataset

Now let’s generate and plot the dataset:

Generating and plotting the P2 Dataset:
rng = np.random.RandomState(1234)
X, y = make_P2([1000, 1000], random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,
 random_state=rng)
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plot_dataset(X_train, y_train, ax=axs[0], title='P2 Training set')
plot_dataset(X_test, y_test, ax=axs[1], title='P2 Test set')

[image: P2 Training set, P2 Test set]Out:

<AxesSubplot:title={'center':'P2 Test set'}, xlabel='Feature 1', ylabel='Feature 2'>

Evaluating the performance of dynamic selection methods

We will now generate a pool composed of 5 Decision Stumps using AdaBoost.

These are weak linear models. Each base classifier
has a classification performance close to 50%.

pool_classifiers = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
 n_estimators=5, random_state=rng)
pool_classifiers.fit(X_train, y_train)

ax = plot_dataset(X_train, y_train, title='Five Decision Stumps generated')
for clf in pool_classifiers:
 plot_classifier_decision(ax, clf, X_train)
 ax.set_xlim((0, 1))
 ax.set_ylim((0, 1))

plt.show()
plt.tight_layout()

[image: Five Decision Stumps generated]

Comparison with Dynamic Selection techniques

We will now consider four DS methods: k-Nearest Oracle-Eliminate (KNORA-E),
Dynamic Ensemble Selection performance (DES-P), Overall Local Accuracy (OLA)
and Rank. Let’s train the classifiers and plot their decision boundaries:

knora_e = KNORAE(pool_classifiers).fit(X_train, y_train)
desp = DESP(pool_classifiers).fit(X_train, y_train)
ola = OLA(pool_classifiers).fit(X_train, y_train)
rank = Rank(pool_classifiers).fit(X_train, y_train)

Plotting the Decision Border of the DS methods.
fig2, sub = plt.subplots(2, 2, figsize=(15, 10))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
titles = ['KNORA-Eliminate', 'DES-P', 'Overall Local Accuracy (OLA)',
 'Modified Rank']

classifiers = [knora_e, desp, ola, rank]
for clf, ax, title in zip(classifiers, sub.flatten(), titles):
 plot_classifier_decision(ax, clf, X_train, mode='filled', alpha=0.4)
 plot_dataset(X_test, y_test, ax=ax)
 ax.set_xlim(np.min(X[:, 0]), np.max(X[:, 0]))
 ax.set_ylim(np.min(X[:, 1]), np.max(X[:, 1]))
 ax.set_title(title, fontsize=15)

Setting figure to show
sphinx_gallery_thumbnail_number = 3

plt.show()
plt.tight_layout()

[image: KNORA-Eliminate, DES-P, Overall Local Accuracy (OLA), Modified Rank]

Comparison to baselines

Let’s now compare the results with four baselines: Support Vector Machine
(SVM) with an RBF kernel; Multi-Layer Perceptron (MLP), Random Forest,
Adaboost, and Stacking.

Setting a baseline using standard classification methods
svm = SVC(gamma='scale', random_state=rng).fit(X_train, y_train)
mlp = MLPClassifier(max_iter=10000, random_state=rng).fit(X_train, y_train)
forest = RandomForestClassifier(n_estimators=10,
 random_state=rng).fit(X_train, y_train)
boosting = AdaBoostClassifier(random_state=rng).fit(X_train, y_train)
stacked_lr = StackedClassifier(pool_classifiers=pool_classifiers,
 random_state=rng)
stacked_lr.fit(X_train, y_train)

stacked_dt = StackedClassifier(pool_classifiers=pool_classifiers,
 random_state=rng,
 meta_classifier=DecisionTreeClassifier())
stacked_dt.fit(X_train, y_train)

Out:

StackedClassifier(meta_classifier=DecisionTreeClassifier(),
 pool_classifiers=AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=1),
 n_estimators=5,
 random_state=RandomState(MT19937) at 0x7F5C0FDAACA8),
 random_state=RandomState(MT19937) at 0x7F5C0FDAACA8)

fig2, sub = plt.subplots(2, 3, figsize=(15, 7))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
titles = ['SVM decision', 'MLP decision', 'RF decision',
 'Boosting decision', 'Stacked LR', 'Stacked Decision Tree']
classifiers = [svm, mlp, forest, boosting, stacked_lr, stacked_dt]
for clf, ax, title in zip(classifiers, sub.flatten(), titles):
 plot_classifier_decision(ax, clf, X_test, mode='filled', alpha=0.4)
 plot_dataset(X_test, y_test, ax=ax)
 ax.set_xlim(np.min(X[:, 0]), np.max(X[:, 0]))
 ax.set_ylim(np.min(X[:, 1]), np.max(X[:, 1]))
 ax.set_title(title, fontsize=15)

plt.show()
plt.tight_layout()

[image: SVM decision, MLP decision, RF decision, Boosting decision, Stacked LR, Stacked Decision Tree]

Evaluation on the test set

Finally, let’s evaluate the baselines and the Dynamic Selection methods on
the test set:

print('KNORAE score = {}'.format(knora_e.score(X_test, y_test)))
print('DESP score = {}'.format(desp.score(X_test, y_test)))
print('OLA score = {}'.format(ola.score(X_test, y_test)))
print('Rank score = {}'.format(rank.score(X_test, y_test)))
print('SVM score = {}'.format(svm.score(X_test, y_test)))
print('MLP score = {}'.format(mlp.score(X_test, y_test)))
print('RF score = {}'.format(forest.score(X_test, y_test)))
print('Boosting score = {}'.format(boosting.score(X_test, y_test)))
print('Stacking LR score = {}' .format(stacked_lr.score(X_test, y_test)))
print('Staking Decision Tree = {}' .format(stacked_dt.score(X_test, y_test)))

Out:

KNORAE score = 0.948
DESP score = 0.927
OLA score = 0.932
Rank score = 0.948
SVM score = 0.798
MLP score = 0.794
RF score = 0.923
Boosting score = 0.795
Stacking LR score = 0.716
Staking Decision Tree = 0.732

Total running time of the script: (0 minutes 19.248 seconds)

Download Python source code: plot_example_P2.py

Download Jupyter notebook: plot_example_P2.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Release history

Version 0.3

	Third release of the stable API. By Rafael M O Cruz [https://github.com/Menelau] and Luiz G Hafemann [https://github.com/luizgh]

Changes

	All techniques are now sklearn estimators and passes the check_estimator tests.

	All techniques can now be instantiated without a trained pool of classifiers.

	Pool of classifiers can now be fitted together with the ensemble techniques. See simple example.

	Added support for Faiss (Facebook AI Similarity Search) for fast region of competence estimation on GPU.

	Added DES Multi-class Imbalance method deslib.des.des_mi.DESMI.

	Added stacked classifier model, deslib.static.stacked.StackedClassifier to the static ensemble module.

	Added a new Instance Hardness measure utils.instance_hardness.kdn_score().

	Added Instance Hardness support when using DES-Clustering.

	Added label encoder for the static module.

	Added a script utils.datasets with routines to generate synthetic datasets (e.g., the P2 and XOR datasets).

	Changed name of base classes (Adding Base to their following scikit-learn standards).

	Removal of DFP_mask, neighbors and distances as class variables.

	Changed signature of methods estimate_competence, predict_with_ds, predict_proba_with_ds. They now require the neighbors and distances to be passed as input arguments.

	Added random_state parameter to all methods in order to have reproducible results.

	Added Python 3.7 support.

	New and updated examples.

	Added performance tests comparing the speed of Faiss vs sklearn KNN.

Bug Fixes

	Fixed bug with META-DES when checking if the meta-classifier was already fitted.

	Fixed bug with random state on DCS techniques.

	Fixed high memory consumption on DES probabilistic methods.

	Fixed bug on Heterogeneous ensembles example and notebooks examples.

	Fixed bug on deslib.des.probabilistic.MinimumDifference when only samples from a single class are provided.

	Fixed problem with DS methods when the number of training examples was lower than the k value.

	Fixed division by zero problems with APosteriori APriori MLA when the distance is equal to zero.

	Fixed bug on deslib.utils.prob_functions.exponential_func() when the support obtained for the correct class was equal to one.

Version 0.2

	Second release of the stable API. By Rafael M O Cruz [https://github.com/Menelau] and Luiz G Hafemann [https://github.com/luizgh].

Changes

	Implemented Label Encoding: labels are no longer required to be integers starting from 0. Categorical (strings) and non-sequential integers are supported (similarly to scikit-learn).

	Batch processing: Vectorized implementation of predictions. Large speed-up in computation time (100x faster in some cases).

	Predict proba: only required (in the base estimators) if using methods that rely on probabilities (or if requesting probabilities from the ensemble).

	Improved documentation: Included additional examples, a step-by-step tutorial on how to use the library.

	New integration tests: Now covering predict_proba, IH and DFP.

	Bug fixes on 1) predict_proba 2) KNOP with DFP.

Version 0.1

API

	First release of the stable API. By Rafael M O Cruz [https://github.com/Menelau] and Luiz G Hafemann [https://github.com/luizgh].

Implemented methods:

	
	DES techniques currently available are:

	
	META-DES

	K-Nearest-Oracle-Eliminate (KNORA-E)

	K-Nearest-Oracle-Union (KNORA-U)

	Dynamic Ensemble Selection-Performance(DES-P)

	K-Nearest-Output Profiles (KNOP)

	Randomized Reference Classifier (DES-RRC)

	DES Kullback-Leibler Divergence (DES-KL)

	DES-Exponential

	DES-Logarithmic

	DES-Minimum Difference

	DES-Clustering

	DES-KNN

	
	DCS techniques:

	
	Modified Classifier Rank (Rank)

	Overall Locall Accuracy (OLA)

	Local Class Accuracy (LCA)

	Modified Local Accuracy (MLA)

	Multiple Classifier Behaviour (MCB)

	A Priori Selection (A Priori)

	A Posteriori Selection (A Posteriori)

	
	Baseline methods:

	
	Oracle

	Single Best

	Static Selection

	Dynamic Frienemy Prunning (DFP)

	Diversity measures

	Aggregation functions

Version 0.1

API

	First release of the stable API. By Rafael M O Cruz [https://github.com/Menelau] and Luiz G Hafemann [https://github.com/luizgh].

Implemented methods:

	
	DES techniques currently available are:

	
	META-DES

	K-Nearest-Oracle-Eliminate (KNORA-E)

	K-Nearest-Oracle-Union (KNORA-U)

	Dynamic Ensemble Selection-Performance(DES-P)

	K-Nearest-Output Profiles (KNOP)

	Randomized Reference Classifier (DES-RRC)

	DES Kullback-Leibler Divergence (DES-KL)

	DES-Exponential

	DES-Logarithmic

	DES-Minimum Difference

	DES-Clustering

	DES-KNN

	
	DCS techniques:

	
	Modified Classifier Rank (Rank)

	Overall Locall Accuracy (OLA)

	Local Class Accuracy (LCA)

	Modified Local Accuracy (MLA)

	Multiple Classifier Behaviour (MCB)

	A Priori Selection (A Priori)

	A Posteriori Selection (A Posteriori)

	
	Baseline methods:

	
	Oracle

	Single Best

	Static Selection

	Dynamic Frienemy Prunning (DFP)

	Diversity measures

	Aggregation functions

Version 0.2

	Second release of the stable API. By Rafael M O Cruz [https://github.com/Menelau] and Luiz G Hafemann [https://github.com/luizgh].

Changes

	Implemented Label Encoding: labels are no longer required to be integers starting from 0. Categorical (strings) and non-sequential integers are supported (similarly to scikit-learn).

	Batch processing: Vectorized implementation of predictions. Large speed-up in computation time (100x faster in some cases).

	Predict proba: only required (in the base estimators) if using methods that rely on probabilities (or if requesting probabilities from the ensemble).

	Improved documentation: Included additional examples, a step-by-step tutorial on how to use the library.

	New integration tests: Now covering predict_proba, IH and DFP.

	Bug fixes on 1) predict_proba 2) KNOP with DFP.

Version 0.3

	Third release of the stable API. By Rafael M O Cruz [https://github.com/Menelau] and Luiz G Hafemann [https://github.com/luizgh]

Changes

	All techniques are now sklearn estimators and passes the check_estimator tests.

	All techniques can now be instantiated without a trained pool of classifiers.

	Pool of classifiers can now be fitted together with the ensemble techniques. See simple example.

	Added support for Faiss (Facebook AI Similarity Search) for fast region of competence estimation on GPU.

	Added DES Multi-class Imbalance method deslib.des.des_mi.DESMI.

	Added stacked classifier model, deslib.static.stacked.StackedClassifier to the static ensemble module.

	Added a new Instance Hardness measure utils.instance_hardness.kdn_score().

	Added Instance Hardness support when using DES-Clustering.

	Added label encoder for the static module.

	Added a script utils.datasets with routines to generate synthetic datasets (e.g., the P2 and XOR datasets).

	Changed name of base classes (Adding Base to their following scikit-learn standards).

	Removal of DFP_mask, neighbors and distances as class variables.

	Changed signature of methods estimate_competence, predict_with_ds, predict_proba_with_ds. They now require the neighbors and distances to be passed as input arguments.

	Added random_state parameter to all methods in order to have reproducible results.

	Added Python 3.7 support.

	New and updated examples.

	Added performance tests comparing the speed of Faiss vs sklearn KNN.

Bug Fixes

	Fixed bug with META-DES when checking if the meta-classifier was already fitted.

	Fixed bug with random state on DCS techniques.

	Fixed high memory consumption on DES probabilistic methods.

	Fixed bug on Heterogeneous ensembles example and notebooks examples.

	Fixed bug on deslib.des.probabilistic.MinimumDifference when only samples from a single class are provided.

	Fixed problem with DS methods when the number of training examples was lower than the k value.

	Fixed division by zero problems with APosteriori APriori MLA when the distance is equal to zero.

	Fixed bug on deslib.utils.prob_functions.exponential_func() when the support obtained for the correct class was equal to one.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deslib	

 	
 	
 deslib.dcs	

 	
 	
 deslib.dcs.a_posteriori	

 	
 	
 deslib.dcs.a_priori	

 	
 	
 deslib.dcs.lca	

 	
 	
 deslib.dcs.mcb	

 	
 	
 deslib.dcs.mla	

 	
 	
 deslib.dcs.ola	

 	
 	
 deslib.dcs.rank	

 	
 	
 deslib.des	

 	
 	
 deslib.des.des_clustering	

 	
 	
 deslib.des.des_knn	

 	
 	
 deslib.des.des_mi	

 	
 	
 deslib.des.des_p	

 	
 	
 deslib.des.knop	

 	
 	
 deslib.des.knora_e	

 	
 	
 deslib.des.knora_u	

 	
 	
 deslib.des.meta_des	

 	
 	
 deslib.des.probabilistic	

 	
 	
 deslib.static	

 	
 	
 deslib.static.oracle	

 	
 	
 deslib.static.single_best	

 	
 	
 deslib.static.stacked	

 	
 	
 deslib.static.static_selection	

 	
 	
 deslib.util	

 	
 	
 deslib.util.aggregation	

 	
 	
 deslib.util.datasets	

 	
 	
 deslib.util.dfp	

 	
 	
 deslib.util.diversity	

 	
 	
 deslib.util.faiss_knn_wrapper	

 	
 	
 deslib.util.instance_hardness	

 	
 	
 deslib.util.knne	

 	
 	
 deslib.util.prob_functions	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | W

A

 	
 	agreement_measure() (in module deslib.util.diversity)

 	APosteriori (class in deslib.dcs.a_posteriori)

 	
 	APriori (class in deslib.dcs.a_priori)

 	average_combiner() (in module deslib.util.aggregation)

 	average_rule() (in module deslib.util.aggregation)

B

 	
 	BaseProbabilistic (class in deslib.des.probabilistic)

C

 	
 	ccprmod() (in module deslib.util.prob_functions)

 	
 	compute_pairwise_diversity() (in module deslib.util.diversity)

 	correlation_coefficient() (in module deslib.util.diversity)

D

 	
 	DESClustering (class in deslib.des.des_clustering)

 	DESKL (class in deslib.des.probabilistic)

 	DESKNN (class in deslib.des.des_knn)

 	deslib.dcs (module)

 	deslib.dcs.a_posteriori (module)

 	deslib.dcs.a_priori (module)

 	deslib.dcs.lca (module)

 	deslib.dcs.mcb (module)

 	deslib.dcs.mla (module)

 	deslib.dcs.ola (module)

 	deslib.dcs.rank (module)

 	deslib.des (module)

 	deslib.des.des_clustering (module)

 	deslib.des.des_knn (module)

 	deslib.des.des_mi (module)

 	deslib.des.des_p (module)

 	deslib.des.knop (module)

 	deslib.des.knora_e (module)

 	deslib.des.knora_u (module)

 	
 	deslib.des.meta_des (module)

 	deslib.des.probabilistic (module), [1], [2], [3], [4], [5]

 	deslib.static (module)

 	deslib.static.oracle (module)

 	deslib.static.single_best (module)

 	deslib.static.stacked (module)

 	deslib.static.static_selection (module)

 	deslib.util (module)

 	deslib.util.aggregation (module)

 	deslib.util.datasets (module)

 	deslib.util.dfp (module)

 	deslib.util.diversity (module)

 	deslib.util.faiss_knn_wrapper (module)

 	deslib.util.instance_hardness (module)

 	deslib.util.knne (module)

 	deslib.util.prob_functions (module)

 	DESMI (class in deslib.des.des_mi)

 	DESP (class in deslib.des.des_p)

 	disagreement_measure() (in module deslib.util.diversity)

 	double_fault() (in module deslib.util.diversity)

E

 	
 	entropy_func() (in module deslib.util.prob_functions)

 	estimate_competence() (deslib.dcs.a_posteriori.APosteriori method)

 	(deslib.dcs.a_priori.APriori method)

 	(deslib.dcs.lca.LCA method)

 	(deslib.dcs.mcb.MCB method)

 	(deslib.dcs.mla.MLA method)

 	(deslib.dcs.ola.OLA method)

 	(deslib.dcs.rank.Rank method)

 	(deslib.des.des_clustering.DESClustering method)

 	(deslib.des.des_knn.DESKNN method)

 	(deslib.des.des_mi.DESMI method)

 	(deslib.des.des_p.DESP method)

 	(deslib.des.knora_e.KNORAE method)

 	(deslib.des.knora_u.KNORAU method)

 	(deslib.des.probabilistic.BaseProbabilistic method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	
 	estimate_competence_from_proba() (deslib.des.knop.KNOP method)

 	(deslib.des.meta_des.METADES method)

 	Exponential (class in deslib.des.probabilistic)

 	exponential_func() (in module deslib.util.prob_functions)

F

 	
 	FaissKNNClassifier (class in deslib.util.faiss_knn_wrapper)

 	fit() (deslib.dcs.a_posteriori.APosteriori method)

 	(deslib.dcs.a_priori.APriori method)

 	(deslib.dcs.lca.LCA method)

 	(deslib.dcs.mcb.MCB method)

 	(deslib.dcs.mla.MLA method)

 	(deslib.dcs.ola.OLA method)

 	(deslib.dcs.rank.Rank method)

 	(deslib.des.des_clustering.DESClustering method)

 	(deslib.des.des_knn.DESKNN method)

 	(deslib.des.des_mi.DESMI method)

 	(deslib.des.des_p.DESP method)

 	(deslib.des.knop.KNOP method)

 	(deslib.des.knora_e.KNORAE method)

 	(deslib.des.knora_u.KNORAU method)

 	(deslib.des.meta_des.METADES method)

 	(deslib.des.probabilistic.BaseProbabilistic method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	(deslib.static.oracle.Oracle method)

 	(deslib.static.single_best.SingleBest method)

 	(deslib.static.stacked.StackedClassifier method)

 	(deslib.static.static_selection.StaticSelection method)

 	(deslib.util.faiss_knn_wrapper.FaissKNNClassifier method)

 	(deslib.util.knne.KNNE method)

 	
 	frienemy_pruning() (in module deslib.util.dfp)

 	frienemy_pruning_preprocessed() (in module deslib.util.dfp)

H

 	
 	hardness_region_competence() (in module deslib.util.instance_hardness)

K

 	
 	kdn_score() (in module deslib.util.instance_hardness)

 	kneighbors() (deslib.util.faiss_knn_wrapper.FaissKNNClassifier method)

 	(deslib.util.knne.KNNE method)

 	
 	KNNE (class in deslib.util.knne)

 	KNOP (class in deslib.des.knop)

 	KNORAE (class in deslib.des.knora_e)

 	KNORAU (class in deslib.des.knora_u)

L

 	
 	LCA (class in deslib.dcs.lca)

 	
 	log_func() (in module deslib.util.prob_functions)

 	Logarithmic (class in deslib.des.probabilistic)

M

 	
 	majority_voting() (in module deslib.util.aggregation)

 	majority_voting_rule() (in module deslib.util.aggregation)

 	make_banana() (in module deslib.util.datasets)

 	make_banana2() (in module deslib.util.datasets)

 	make_circle_square() (in module deslib.util.datasets)

 	make_P2() (in module deslib.util.datasets)

 	make_xor() (in module deslib.util.datasets)

 	maximum_combiner() (in module deslib.util.aggregation)

 	maximum_rule() (in module deslib.util.aggregation)

 	
 	MCB (class in deslib.dcs.mcb)

 	median_combiner() (in module deslib.util.aggregation)

 	median_rule() (in module deslib.util.aggregation)

 	METADES (class in deslib.des.meta_des)

 	min_difference() (in module deslib.util.prob_functions)

 	minimum_combiner() (in module deslib.util.aggregation)

 	minimum_rule() (in module deslib.util.aggregation)

 	MinimumDifference (class in deslib.des.probabilistic)

 	MLA (class in deslib.dcs.mla)

N

 	
 	negative_double_fault() (in module deslib.util.diversity)

O

 	
 	OLA (class in deslib.dcs.ola)

 	
 	Oracle (class in deslib.static.oracle)

P

 	
 	potential_func() (deslib.des.probabilistic.BaseProbabilistic static method)

 	predict() (deslib.dcs.a_posteriori.APosteriori method)

 	(deslib.dcs.a_priori.APriori method)

 	(deslib.dcs.lca.LCA method)

 	(deslib.dcs.mcb.MCB method)

 	(deslib.dcs.mla.MLA method)

 	(deslib.dcs.ola.OLA method)

 	(deslib.dcs.rank.Rank method)

 	(deslib.des.des_clustering.DESClustering method)

 	(deslib.des.des_knn.DESKNN method)

 	(deslib.des.des_mi.DESMI method)

 	(deslib.des.des_p.DESP method)

 	(deslib.des.knop.KNOP method)

 	(deslib.des.knora_e.KNORAE method)

 	(deslib.des.knora_u.KNORAU method)

 	(deslib.des.meta_des.METADES method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	(deslib.static.oracle.Oracle method)

 	(deslib.static.single_best.SingleBest method)

 	(deslib.static.stacked.StackedClassifier method)

 	(deslib.static.static_selection.StaticSelection method)

 	(deslib.util.faiss_knn_wrapper.FaissKNNClassifier method)

 	(deslib.util.knne.KNNE method)

 	predict_proba() (deslib.dcs.a_posteriori.APosteriori method)

 	(deslib.dcs.a_priori.APriori method)

 	(deslib.dcs.lca.LCA method)

 	(deslib.dcs.mcb.MCB method)

 	(deslib.dcs.mla.MLA method)

 	(deslib.dcs.ola.OLA method)

 	(deslib.dcs.rank.Rank method)

 	(deslib.des.des_clustering.DESClustering method)

 	(deslib.des.des_knn.DESKNN method)

 	(deslib.des.des_mi.DESMI method)

 	(deslib.des.des_p.DESP method)

 	(deslib.des.knop.KNOP method)

 	(deslib.des.knora_e.KNORAE method)

 	(deslib.des.knora_u.KNORAU method)

 	(deslib.des.meta_des.METADES method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	(deslib.static.oracle.Oracle method)

 	(deslib.static.single_best.SingleBest method)

 	(deslib.static.stacked.StackedClassifier method)

 	(deslib.static.static_selection.StaticSelection method)

 	(deslib.util.faiss_knn_wrapper.FaissKNNClassifier method)

 	(deslib.util.knne.KNNE method)

 	
 	predict_proba_ensemble() (in module deslib.util.aggregation)

 	product_combiner() (in module deslib.util.aggregation)

 	product_rule() (in module deslib.util.aggregation)

Q

 	
 	Q_statistic() (in module deslib.util.diversity)

R

 	
 	Rank (class in deslib.dcs.rank)

 	
 	ratio_errors() (in module deslib.util.diversity)

 	RRC (class in deslib.des.probabilistic)

S

 	
 	score() (deslib.dcs.a_posteriori.APosteriori method)

 	(deslib.dcs.a_priori.APriori method)

 	(deslib.dcs.lca.LCA method)

 	(deslib.dcs.mcb.MCB method)

 	(deslib.dcs.mla.MLA method)

 	(deslib.dcs.ola.OLA method)

 	(deslib.dcs.rank.Rank method)

 	(deslib.des.des_clustering.DESClustering method)

 	(deslib.des.des_knn.DESKNN method)

 	(deslib.des.des_mi.DESMI method)

 	(deslib.des.des_p.DESP method)

 	(deslib.des.knop.KNOP method)

 	(deslib.des.knora_e.KNORAE method)

 	(deslib.des.knora_u.KNORAU method)

 	(deslib.des.meta_des.METADES method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	(deslib.static.oracle.Oracle method)

 	(deslib.static.single_best.SingleBest method)

 	(deslib.static.stacked.StackedClassifier method)

 	(deslib.static.static_selection.StaticSelection method)

 	select() (deslib.dcs.a_posteriori.APosteriori method)

 	(deslib.dcs.a_priori.APriori method)

 	(deslib.dcs.lca.LCA method)

 	(deslib.dcs.mcb.MCB method)

 	(deslib.dcs.mla.MLA method)

 	(deslib.dcs.ola.OLA method)

 	(deslib.dcs.rank.Rank method)

 	(deslib.des.des_clustering.DESClustering method)

 	(deslib.des.des_knn.DESKNN method)

 	(deslib.des.des_mi.DESMI method)

 	(deslib.des.des_p.DESP method)

 	(deslib.des.knop.KNOP method)

 	(deslib.des.knora_e.KNORAE method)

 	(deslib.des.knora_u.KNORAU method)

 	(deslib.des.meta_des.METADES method)

 	(deslib.des.probabilistic.BaseProbabilistic method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	
 	SingleBest (class in deslib.static.single_best)

 	softmax() (in module deslib.util.prob_functions)

 	source_competence() (deslib.des.probabilistic.BaseProbabilistic method)

 	(deslib.des.probabilistic.DESKL method)

 	(deslib.des.probabilistic.Exponential method)

 	(deslib.des.probabilistic.Logarithmic method)

 	(deslib.des.probabilistic.MinimumDifference method)

 	(deslib.des.probabilistic.RRC method)

 	StackedClassifier (class in deslib.static.stacked)

 	StaticSelection (class in deslib.static.static_selection)

W

 	
 	weighted_majority_voting() (in module deslib.util.aggregation)

 	
 	weighted_majority_voting_rule() (in module deslib.util.aggregation)

Computation times

01:23.215 total execution time for auto_examples files:

	Dynamic selection with linear classifiers: XOR example (plot_xor_example.py)

	00:21.018

	0.0 MB

	Visualizing decision boundaries on the P2 problem (plot_example_P2.py)

	00:19.248

	0.0 MB

	Measuring the influence of the region of competence (plot_influence_k_value.py)

	00:17.253

	0.0 MB

	Dynamic selection vs K-NN: Using instance hardness (plot_using_instance_hardness.py)

	00:09.403

	0.0 MB

	Comparing dynamic selection with Random Forest (plot_random_forest.py)

	00:08.467

	0.0 MB

	Comparing dynamic selection with baseline static methods (plot_comparing_dynamic_static.py)

	00:05.528

	0.0 MB

	Using the Dynamic Frienemy Pruning (DFP) (plot_example_DFP.py)

	00:02.298

	0.0 MB

	Calibrating base classifiers to estimate probabilities (example_calibrating_classifiers.py)

	00:00.000

	0.0 MB

	Example using heterogeneous ensemble (example_heterogeneous.py)

	00:00.000

	0.0 MB

	Simple example (simple_example.py)

	00:00.000

	0.0 MB

 _images/sphx_glr_plot_example_P2_001.png
Feature 2

10

0.8

0.6

0.4

02

0.0

P2 Training set

Ll o ©0
sl g
i AN

0.0 02 0.4 0.6 0.8 10
Feature 1

Feature 2

10

0.8

0.6

0.4

02

0.0

P2 Test set

0.0 02 0.4 0.6 0.8 10
Feature 1

_images/sphx_glr_plot_example_P2_002.png
Feature 2

Feature 1

_images/sphx_glr_plot_example_DFP_001.png
Area under the roc curve (AUC)

0.800

0.775

0.750

0.725

0.700

0.675

0.650

AUC Performance: DS vs FIRE-DES

W DES
[0 FIRE-DES

APriori APosteriori OLA DES-P META-DES

_images/sphx_glr_plot_example_DFP_thumb.png
v under the ro cuve (V)

o800

o750

s

g

oers

§

oe0

AUC Performance: DS vs FIRE-DES

Aprion A posteron

o

ey

DesP vETADES

_images/sphx_glr_plot_example_P2_thumb.png

_images/sphx_glr_plot_influence_k_value_001.png
Accuracy on the test set (%)

0.800

0.775

0.750

0.725

0.700

0.675

0.650

0.625

0.600

MCB
oLA
DES-P
KNORA-U
LcA
KNORA-E
Rank

2

5 6 7 8 9 10 11 12 13
Region of competence size (K value)

14 15

_images/sphx_glr_plot_example_P2_003.png
Feature 2

Feature 2

KNORA-Eliminate

Feature 2

Feature 1

Overall Local Accuracy (OLA)

02

0.4 0.6
Feature 1

Modified Rank

"8 %20 o©° %0
° °o o0

Feature 2

Feature 1

Feature 1

_images/sphx_glr_plot_example_P2_004.png
Feature 2

Feature 2

SVM decision

0.4 0.6
Feature 1

Boosting decisio!

Feature 2

Feature 2

0.4

0.6

RF decision

0.4 0.6

Feature 1

Feature 1

Feature 1

_images/sphx_glr_plot_influence_k_value_thumb.png
orrs
€
¥
£
Son) —
H —ose
g osse — oAU
i ey
e
oae

T35 ¢ s s bnnb b
Region of competence size (K value)

_images/sphx_glr_plot_random_forest_001.png
80.0

e o 9 o o o 9
8 6 ¢ & ©°S @ ©
g R & R R 8 8

(%) 395 1591 3y Uo AdeINddY

_images/sphx_glr_plot_random_forest_thumb.png
Accuracy on the test set (%)

]

3

Al

3

éqﬁ‘f)éfxﬁ,yppy

nav.xhtml

 Table of Contents

 		
 Welcome to DESlib documentation!

_images/sphx_glr_plot_xor_example_001.png
Feature 2

Feature 2

Feature 2

Feature 2

Training data Bagging

1.00 100
075 N 075
g g
0.50 El 3 050
8 8
0.25 = %025
0.00 0.00
0.0 02 04 06 08 10 02 04 06 08 00 02 04 06 08 10
Feature 1 Feature 1 Feature 1
KNORA-E OLA LCA
1.00 1.00
075 ~ n 075
g g
0.50 3 3 050
g g

025 025

0.00 0.00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Feature 1 Feature 1 Feature 1
DESKNN MCB
1.00 1.00 1.00
075 o 075 o 075
g g
0.50 3 os0 5 0501
8 8
0.25 %025 %025
0.00 0.00 0.00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Feature 1 Feature 1 Feature 1
RANK KNOP META-DES
1.00 1.00
075 ~ 075 ~
g g
0.50 3 os0 El
8 8
0.25 %025 =
0.00 0.00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Feature 1 Feature 1 Feature 1

_images/sphx_glr_plot_xor_example_thumb.png

_images/sphx_glr_plot_using_instance_hardness_001.png
Accuracy on the test set (%)

0.80

0.78

0.76

074

072

0.70

0.68

0.66

MCB
oLA

Mod. Rank
DES-P

0.0000

0.1429

IH value

0.2857

0.4286

_images/sphx_glr_plot_using_instance_hardness_thumb.png
s

g

s

Accuracy on the test set (%)

o rank
e
ioray

ey

IH value

[EZ]

o

_images/sphx_glr_simple_example_thumb.png

_static/ajax-loader.gif

_static/broken_example.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/no_image.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/sphx_glr_example_heterogeneous_thumb.png

_images/sphx_glr_plot_comparing_dynamic_static_001.png
o o o o o o o
o S @ o & S
8 8 3 © S R R

(%) 395 1591 3y Uo AdeINddY

_images/sphx_glr_example_calibrating_classifiers_thumb.png

_images/sphx_glr_plot_comparing_dynamic_static_thumb.png
Py
S EERARY
» jiifr"

