
deslib Documentation
Release 0.3

Rafael M. O. Cruz

Feb 18, 2019

Contents

1 Introduction 3

2 Philosophy 5

3 API Reference 7
3.1 User guide . 7
3.2 API Reference . 15
3.3 General examples . 98
3.4 Release history . 127

4 Example 133

5 Citation 135
5.1 References . 135

Python Module Index 137

i

ii

deslib Documentation, Release 0.3

DESlib is an ensemble learning library focusing the implementation of the state-of-the-art techniques for dynamic
classifier and ensemble selection.

DESlib is a work in progress. Contributions are welcomed through its GitHub page: https://github.com/
scikit-learn-contrib/DESlib.

Contents 1

https://github.com/scikit-learn-contrib/DESlib
https://github.com/scikit-learn-contrib/DESlib

deslib Documentation, Release 0.3

2 Contents

CHAPTER 1

Introduction

Dynamic Selection (DS) refers to techniques in which the base classifiers are selected on the fly, according to each
new sample to be classified. Only the most competent, or an ensemble containing the most competent classifiers is
selected to predict the label of a specific test sample. The rationale for such techniques is that not every classifier in
the pool is an expert in classifying all unknown samples; rather, each base classifier is an expert in a different local
region of the feature space.

DS is one of the most promising MCS approaches due to the fact that more and more works are reporting the superior
performance of such techniques over static combination methods. Such techniques have achieved better classification
performance especially when dealing with small-sized and imbalanced datasets. A comprehensive review of dynamic
selection can be found in the following papers12

1 : R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,” Information Fusion,
vol. 41, pp. 195 – 216, 2018.

2 : A. S. Britto, R. Sabourin, L. E. S. de Oliveira, Dynamic selection of classifiers - A comprehensive review, Pattern Recognition 47 (11) (2014)
3665–3680.

3

deslib Documentation, Release 0.3

4 Chapter 1. Introduction

CHAPTER 2

Philosophy

DESlib was developed with two objectives in mind: to make it easy to integrate Dynamic Selection algorithms to
machine learning projects, and to facilitate research on this topic, by providing implementations of the main DES and
DCS methods, as well as the commonly used baseline methods. Each algorithm implements the main methods in the
scikit-learn API scikit-learn: fit(X, y), predict(X), predict_proba(X) and score(X, y).

The implementation of the DS methods is modular, following a taxonomy defined in1. This taxonomy considers the
main characteristics of DS methods, that are centered in three components:

1. the methodology used to define the local region, in which the competence level of the base classifiers are
estimated (region of competence);

2. the source of information used to estimate the competence level of the base classifiers.

3. the selection approach to define the best classifier (for DCS) or the best set of classifiers (for DES).

This modular approach makes it easy for researchers to implement new DS methods, in many cases requiring only
the implementation of the method estimate_competence, that is, how the local competence of the base classifier is
measured.

5

http://scikit-learn.org/stable/

deslib Documentation, Release 0.3

6 Chapter 2. Philosophy

CHAPTER 3

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

3.1 User guide

This user guide explains how to install DESlib, how to contribute to the library and presents a step-by-step tutorial to
fit and predict new instances using several dynamic selection techniques.

3.1.1 Installation

The library can be installed using pip:

Stable version:

pip install deslib

Latest version (under development):

pip install git+https://github.com/Menelau/DESlib

DESlib is tested to work with Python 3.5, 3.6 and 3.7. The dependency requirements are:

• scipy(>=0.13.3)

• numpy(>=1.10.4)

• scikit-learn(>=0.19.0)

These dependencies are automatically installed using the pip commands above.

7

deslib Documentation, Release 0.3

Optional dependencies

To use Faiss (Fair AI Similarity Search), a fast implementation of KNN that can use GPUs, follow the instructions
below: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md

Note that Faiss is only available on Linux and MacOS.

3.1.2 Development

DESlib was started by Rafael M. O. Cruz as a way to facilitate research in this topic by providing other researchers a
toolbox with everything that is required to easily develop and compare different dynamic ensemble techniques.

The library is a work in progress. As an open-source project, any type of contribution is welcomed and encouraged!

Contributing to DESlib

You can contribute to the project in several ways:

• Reporting bugs

• Requesting features

• Improving the documentation

• Adding examples to use the library

• Implementing new features and fixing bugs

Reporting Bugs and requesting features

We use Github issues to track all bugs and feature requests; feel free to open an issue if you have found a bug or
wish to see a new feature implemented. Before opening a new issue, please check if the issue is not being currently
addressed: [Issues](https://github.com/scikit-learn-contrib/DESlib/issues)

For reporting bugs:

• Include information of your working environment. This information can be found by running the following code
snippet:

import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import scipy; print("SciPy", scipy.__version__)
import sklearn; print("Scikit-Learn", sklearn.__version__)

• Include a [reproducible](https://stackoverflow.com/help/mcve) code snippet or link to a [gist](https://gist.github.
com). If an exception is raised, please provide the traceback.

Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory.

You can edit the documentation using any text editor and then generate the HTML output by typing make html
from the doc/ directory. Alternatively, make can be used to quickly generate the documentation without the example
gallery. The resulting HTML files will be placed in _build/html/ and are viewable in a web browser. See the README
file in the doc/ directory for more information.

8 Chapter 3. API Reference

https://github.com/facebookresearch/faiss/blob/master/INSTALL.md
https://github.com/scikit-learn-contrib/DESlib/issues
https://stackoverflow.com/help/mcve
https://gist.github.com
https://gist.github.com

deslib Documentation, Release 0.3

For building the documentation, you will need to install sphinx and sphinx_rtd_theme. This can be easily done by
installing the requirements for development using the following command:

pip install -r requirements-dev.txt

Contributing with code

The preferred way to contribute is to fork the main repository to your account:

1. Fork the [project repository](https://github.com/scikit-learn-contrib/DESlib): click on the ‘Fork’ button near the
top of the page. This creates a copy of the code under your account on the GitHub server.

2. Clone this copy to your local disk:

git clone git@github.com:YourLogin/DESlib.git
cd DESlib

3. Install all requirements for development:

pip install -r requirements-dev.txt
pip install --editable .

4. Create a branch to hold your changes:

git checkout -b branch_name

Where branch_name is the new feature or bug to be fixed. Do not work directly on the master branch.

5. Work on this copy on your computer using Git to do the version control. To record your changes in Git, then
push them to GitHub with:

git push -u origin branch_name

It is important to assert your code is well covered by test routines (coverage of at least 90%), well documented and
follows PEP8 guidelines.

6. Create a ‘Pull request’ to send your changes for review.

If your pull request addresses an issue, please use the title to describe the issue and mention the issue number in
the pull request description to ensure a link is created to the original issue.

3.1.3 Tutorial

This tutorial will walk you through generating a pool of classifiers and applying several dynamic selection techniques
for the classification of unknown samples. The tutorial assumes that you are already familiar with the Python language
and the scikit-learn library. Users not familiar with either Python and scikit-learn can start by checking out their
tutorials.

Running Dynamic selection with Bagging

In this first tutorial, we do a step-by-step run of the example_bagging.py, that is included in the examples part of the
DESlib. This example uses the Wisconsin breast cancer dataset available on sklearn.datasets package.

The first step is to run the example to check if everything is working as intended:

3.1. User guide 9

https://github.com/scikit-learn-contrib/DESlib
https://docs.python.org/3.5/tutorial/
http://scikit-learn.org/stable/tutorial/index.html

deslib Documentation, Release 0.3

cd examples
python example_bagging.py

This script run six different dynamic selection models: Three DCS (OLA, A-Priori, MCB) and four DES (KNORA-
Union, KNORA-Eliminate, DES-P and META-DES)

The example outputs the classification accuracy of each dataset:

Evaluating DS techniques:
Classification accuracy KNORA-Union: 0.973404255319
Classification accuracy KNORA-Eliminate: 0.968085106383
Classification accuracy DESP: 0.973404255319
Classification accuracy OLA: 0.968085106383
Classification accuracy A priori: 0.973404255319
Classification accuracy MCB: 0.968085106383
Classification accuracy META-DES: 0.973404255319

Code analysis:

The code starts by importing the corresponding DCS and DES algorithms that are tested as well as the other required
libraries:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import BaggingClassifier

#importing DCS techniques from DESlib
from deslib.dcs.ola import OLA
from deslib.dcs.a_priori import APriori
from deslib.dcs.mcb import MCB

#import DES techniques from DESlib
from deslib.des.des_p import DESP
from deslib.des.knora_u import KNORAU
from deslib.des.knora_e import KNORAE
from deslib.des.meta_des import METADES

As DESlib is built on top of scikit-learn, code will usually required the import of routines from it.

Preparing the dataset:

The next step is loading the data and dividing it into three partitions: Training, validation and test. In the dynamic
selection literature1 the validation set is usually called the dynamic selection dataset (DSEL), since this partition is
used by the dynamic selection techniques in order to select the base classifiers, so in this library we use the same
terminology. The training set (X_train, y_train) is used to fit the pool of classifiers, the validation (X_DSEL, y_DSEL)
set is used to fit the dynamic selection models. The performance of the system is then evaluated on the test set (X_test,
y_test).

1 : R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,” Information Fusion,
vol. 41, pp. 195 – 216, 2018.

10 Chapter 3. API Reference

http://scikit-learn.org/stable/tutorial/index.html

deslib Documentation, Release 0.3

data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

Scale the variables to have 0 mean and unit variance
scalar = StandardScaler()
X_train = scalar.fit_transform(X_train)
X_test = scalar.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train, test_size=0.5)

Another important aspect is to normalize the data so that it has zero mean and unit variance, which is a common
requirement for many machine learning algorithms. This step can be easily done using the StandardScaler class from
scikit-learn. Note that the StandardScaler transform should be fitted using the training and DSEL data only. Then, it
can be applied for the test data.

An important point here is that in case of small datasets or when the base classifier models in the pool are weak
estimators such as Decision Stumps or Perceptrons, an overlap between the training data and DSEL may be beneficial
for achieving better performance.

Training a pool of classifiers:

The next step is to generate a pool of classifiers. This list can be either homogeneous (i.e., all base classifiers are of
the same type) or heterogeneous (base classifiers of different types). The library supports any type of base classifiers
that is compatible with the scikit-learn library.

In this example, we generate a pool composed of 10 Perceptron classifiers using the Bagging technique. It is important
to mention that some DS techniques require that the base classifiers are capable of estimating probabilities (i.e.,
implements the predict_proba function).

For the Perceptron model, this can be achieved by calibrating the outputs of the base classifiers using the Calibrated-
ClassifierCV class from scikit-learn.

model = CalibratedClassifierCV(Perceptron(max_iter=10))

Train a pool of 10 classifiers
pool_classifiers = BaggingClassifier(model, n_estimators=10)
pool_classifiers.fit(X_train, y_train)

Building the DS models

Three DCS and four DES techniques are considered in this example:

• Overal Local Accuracy (OLA)

• Multiple-Classifier Behavior (MCB)

• A Priori selection

• K-Nearest Oracles-Union (KNU)

• K-Nearest Oracles-Eliminate (KNE)

• META-DES

3.1. User guide 11

http://scikit-learn.org/stable/tutorial/index.html

deslib Documentation, Release 0.3

NEW: Since version 0.3, DESlib does not require a trained pool of classifiers for instantiating its estimators. All
estimator can now be instantiated without specifying a pool of classifiers:

DCS techniques
ola = OLA()
mcb = MCB()
apriori = APriori()

DES techniques
knorau = KNORAU()
kne = KNORAE()
desp = DESP()
meta = METADES()

When the pool of classifiers is not specified, a standard BaggingClassifier from sklearn is used, which generates
a pool composed of 10 decision trees. The parameter DSEL_perc controls the percentage of the input data that is used
for fitting DSEL. The remaining data will be used to fit the pool of classifiers. Note that this parameter is only taken
into account if the pool is either equals to None (when it was not informed) or still unfitted (when the base classifiers
were not fitted)

However, since we already trained a pool of classifiers in the previous step we will continue this tutorial by instantiating
the dynamic selection methods with an already fitted pool. For more information on using DESlib estimators without
specifying a trained pool of classifiers see the examples page.

DCS techniques
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers)
apriori = APriori(pool_classifiers)

DES techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
meta = METADES(pool_classifiers)

Fitting the DS techniques:

The next step is to fit the DS model. We call the function fit to prepare the DS techniques for the classification of
new data by pre-processing the information required to apply the DS techniques, such as, fitting the algorithm used to
estimate the region of competence (k-NN, k-Means) and calculating the source of competence of the base classifiers
for each sample in the dynamic selection dataset.

knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
apriori.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Note that if the pool of classifiers is still unfitted, this step will also fit the base classifiers in the pool.

12 Chapter 3. API Reference

auto_examples/index.html

deslib Documentation, Release 0.3

Estimating classification accuracy:

Estimating the classification accuracy of each method is very easy. Each DS technique implements the function score
from scikit-learn in order to estimate the classification accuracy.

print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy KNORA-Union: ', knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ', kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy META-DES: ', apriori.score(X_test, y_test))

However, you may need to calculate the predictions of the model or the estimation of probabilities instead of only
computing the accuracy. Class labels and posterior probabilities can be easily calculated using the predict and pre-
dict_proba methods:

metades.predict(X_test)
metades.predict_proba(X_test)

Changing parameters

Changing the hyper-parameters is very easy. We just need to pass its value when instantiating a new method. For
example, we can change the size of the neighborhood used to estimate the competence level by setting the k value.

DES techniques
knorau = KNORAU(pool_classifiers, k=5)
kne = KNORAE(pool_classifiers, k=5)

Also, we can change the mode DES algorithm works (dynamic selection, dynamic weighting or hybrid) by setting its
mode: .. code-block:: python

meta = METADES(pool_classifiers, Hc=0.8, k=5, mode=’hybrid’)

In this code block, we change the size of the neighborhood (k=5), the value of the sample selection mechanism
(Hc=0.8) and also, state that the META-DES algorithm should work in a hybrid dynamic selection with and weighting
mode. The library accepts the change of several hyper-parameters. A list containing each one for all technique
available as well as its impact in the algorithm is presented in the API Reference.

Applying the Dynamic Frienemy Pruning (DFP)

The library also implements the Dynamic Frienemy Pruning (DFP) proposed in2. So any dynamic selection technique
can be applied using the FIRE (Frienemy Indecision Region Dynamic Ensemble Selection) framework. That is easily
done by setting the DFP to true when initializing a DS technique. In this example, we show how to start the FIRE-
KNORA-U, FIRE-KNORA-E and FIRE-MCB techniques.

fire_knorau = KNORAU(pool_classifiers, DFP=True)
fire_kne = KNORAE(pool_classifiers, DFP=True)
fire_mcb = MCB(pool_classifiers, DFP=True)

We can also set the size of the neighborhood that is used to decide whether the query sample is located in a safe region
or in an indecision region (safe_k):

2 : Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., Online Pruning of Base Classifiers for Dynamic Ensemble Selection, Pattern Recog-
nition, vol. 72, December 2017, pp 44-58.

3.1. User guide 13

api.html

deslib Documentation, Release 0.3

fire_knorau = KNORAU(pool_classifiers, DFP=True, safe_k=3)
fire_kne = KNORAE(pool_classifiers, DFP=True, safe_k=5)
fire_mcb = MCB(pool_classifiers, DFP=True, safe_k=7)

So, the fire_knorau will use a neighborhood composed of 3 samples, fire_knorae of 5 and fire_mcb of 7 in order to
compute whether a given sample is located in a indecision or safe region.

More tutorials on how to use different aspects of the library can be found in examples page

References

3.1.4 Known Issues

The estimators in this library are not compatible with scikit-learn’s GridSearch, and other CV methods. That is, the
following is not supported:

from deslib.des.knora_e import KNORAE
from sklearn.model_selection import GridSearchCV

(...) initialize a pool of classifiers
kne = KNORAE(pool_classifiers)

Do a grid search on KNORAE's "k" parameter
params = {'k': [1, 3, 5, 7]}

grid = GridSearchCV(kne, params)
grid.fit(X_dsel, y_dsel) # Raises an error

This is due to a limitation of a scikit-learn method (sklearn.base.clone), under discussion in this issue

3.1.5 Releasing a new version

Publishing new version involves:

1. Updating the version numbers and creating a new tag in git (which also updates the “stable” version of the
documentation)

2. Creating the distribution (.tar.gz and wheel files), and uploading them to pypi

Some important things to have in mind:

• Read the “Packaging and Distributing Projects” guide: https://packaging.python.org/tutorials/
distributing-packages/

• The version numbers (in setup.py and __init__.py) are used as metadata for pypi and for the readthedocs
documentation - pay attention to them or some things can break. In general, you should be working on a
version such as “0.2.dev”. You then rename it to “0.2” and create a tag “v0.2”. After you finish everything,
you update the version to “0.3.dev” to indicate that new developments are being made for the next version.

Step-by-step process

Make sure you have twine installed: pip install twine

• Update version on setup.py (e.g. “0.1”)

• Update version on deslib/__init__.py

14 Chapter 3. API Reference

auto_examples/index.html
https://github.com/scikit-learn/scikit-learn/issues/8370
https://packaging.python.org/tutorials/distributing-packages/
https://packaging.python.org/tutorials/distributing-packages/

deslib Documentation, Release 0.3

• Create tag: git tag <version> (example: “git tag ‘v0.1’”)

• Push the tag git push origin <version>

• Create the source and wheels distributions

python setup.py sdist # source distribution
python setup.py bdist_wheel # wheel distribution for current python version

• Upload to test pypi and check

– uploading the package:

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

– Note: if you do this multiple times (e.g. to fix an issue), you will need to rename the files under the “dist”
folder: a filename can only be submitted once to pypi. You may also need to manually delete the “source”
version of the distribution, since there can only be one source file per version of the software

– Test an installation from the testing pypi environment.

conda create -y -n testdes python=3
source activate testdes
pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://
→˓pypi.org/simple deslib
conda remove -y --name testdes --all #remove temporary environment

• Upload to production pypi

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

• Update version on setup.py and __init.py__ to mention the new version in development (e.g. “0.2.dev”)

Note #1: Read the docs is automatically updated:

• When a new commit is done in master (this updates the “master” version)

• When a new tag is pushed to github (this updates the “stable” version) -> This seems to not aways work - it is
better to check

Note #2: The documentation automatically links to source files for the methods/classes. This only works if the tag
is pushed to github, and matches the __version__ variable in __init.py__. Example: __version__ = “0.1” and the tag
being: git tag “v0.1”

3.2 API Reference

This is the full API documentation of the DESlib. Currently the library is divided into four modules:

3.2.1 Dynamic Classifier Selection (DCS)

This module contains the implementation of techniques in which only the base classifier that attained the highest
competence level is selected for the classification of the query.

The deslib.dcs provides a set of key dynamic classifier selection algorithms (DCS).

3.2. API Reference 15

deslib Documentation, Release 0.3

DCS base class

class deslib.dcs.base.BaseDCS(pool_classifiers=None, k=7, DFP=False, safe_k=None,
with_IH=False, IH_rate=0.3, selection_method=’best’,
diff_thresh=0.1, random_state=None, knn_classifier=’knn’,
DSEL_perc=0.5)

Base class for a Dynamic Classifier Selection (dcs) method. All dynamic classifier selection classes should
inherit from this class.

Warning: This class should not be used directly, use derived classes instead.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

16 Chapter 3. API Reference

deslib Documentation, Release 0.3

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection. 10th Int. Conference on Image Analysis
and Proc., Venice, Italy (1999), 659-664.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

classify_with_ds(query, predictions, probabilities=None, neighbors=None, distances=None,
DFP_mask=None)

Predicts the class label of the corresponding query sample.

If self.selection_method == “all”, the majority voting scheme is used to aggregate the predictions of all
classifiers with the max competence level estimates for each test examples.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples (For methods that always require probabilities
from the base classifiers)

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

DFP_mask [array of shape = [n_samples, n_classifiers]] Mask containing 1 for the selected
base classifier and 0 otherwise.

Returns

predicted_label [array of shape = [n_samples]] The predicted label for each query

estimate_competence(query, neighbors, distances=None, predictions=None)
Estimate the competence of each base classifier for the classification of the query sample.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

predict_proba_with_ds(query, predictions, probabilities, neighbors=None, distances=None,
DFP_mask=None)

Predicts the posterior probabilities of the corresponding query sample.

3.2. API Reference 17

deslib Documentation, Release 0.3

If self.selection_method == “all”, get the probability estimates of the selected ensemble. Otherwise, the
technique gets the probability estimates from the selected base classifier

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] The predictions of
each base classifier for all samples (For methods that always require probabilities from the
base classifiers).

neighbors [array of shape = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

DFP_mask [array of shape = [n_samples, n_classifiers]] Mask containing 1 for the selected
base classifier and 0 otherwise.

Returns

predicted_proba: array of shape = [n_samples, n_classes] Posterior probabilities esti-
mates for each test example.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

18 Chapter 3. API Reference

deslib Documentation, Release 0.3

A posteriori

class deslib.dcs.a_posteriori.APosteriori(pool_classifiers=None, k=7, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3,
selection_method=’diff’, diff_thresh=0.1,
random_state=None, knn_classifier=’knn’,
DSEL_perc=0.5)

A Posteriori Dynamic classifier selection.

The A Posteriori method uses the probability of correct classification of a given base classifier 𝑐𝑖 for each
neighbor 𝑥𝑘 with respect to a single class. Consider a classifier 𝑐𝑖 that assigns a test sample to class 𝑤𝑙. Then,
only the samples belonging to class 𝑤𝑙 are taken into account during the competence level estimates. Base
classifiers with a higher probability of correct classification have a higher competence level. Moreover, the
method also weights the influence of each neighbor 𝑥𝑘 according to its Euclidean distance to the query sample.
The closest neighbors have a higher influence on the competence level estimate. In cases where no sample in
the region of competence belongs to the predicted class, 𝑤𝑙, the competence level estimate of the base classifier
is equal to zero.

A single classifier is selected only if its competence level is significantly higher than that of the other base
classifiers in the pool (higher than a pre-defined threshold). Otherwise, all classifiers in the pool are combined
using the majority voting rule. The selection methodology can be modified by modifying the hyper-parameter
selection_method.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict” and “predict_proba”. If None, then the pool of classifiers is a bagging
classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

3.2. API Reference 19

deslib Documentation, Release 0.3

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection 10th Int. Conf. on Image Anal. and Proc.,
Venice, Italy (1999), 659-664.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances, predictions=None)
Estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the A
Posteriori method.

The competence level is estimated based on the probability of correct classification of the base classifier
𝑐𝑖, for each neighbor 𝑥𝑘 belonging to a specific class 𝑤𝑙. In this case, 𝑤𝑙 is the class predicted by the
base classifier 𝑐𝑖, for the query sample. This method also weights the influence of each training sample
according to its Euclidean distance to the query instance. The closest samples have a higher influence in
the computation of the competence level. The competence level estimate is represented by the following
equation:

𝛿𝑖,𝑗 =

∑︀
x𝑘∈𝜔𝑙

𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)𝑊𝑘∑︀𝐾
𝑘=1 𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)𝑊𝑘

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

Parameters

20 Chapter 3. API Reference

deslib Documentation, Release 0.3

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

3.2. API Reference 21

deslib Documentation, Release 0.3

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

A Priori

class deslib.dcs.a_priori.APriori(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, selection_method=’diff’,
diff_thresh=0.1, random_state=None, knn_classifier=’knn’,
DSEL_perc=0.5)

A Priori dynamic classifier selection.

The A Priori method uses the probability of correct classification of a given base classifier 𝑐𝑖 for each neighbor
𝑥𝑘 for the competence level estimation. Base classifiers with a higher probability of correct classification have a
higher competence level. Moreover, the method also weights the influence of each neighbor 𝑥𝑘 according to its
Euclidean distance to the query sample. The closest neighbors have a higher influence on the competence level
estimate.

A single classifier is selected only if its competence level is significantly higher than that of the other base
classifiers in the pool (higher than a pre-defined threshold). Otherwise, all classifiers i the pool are combined
using the majority voting rule.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict” and “predict_proba”. If None, then the pool of classifiers is a bagging
classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

22 Chapter 3. API Reference

deslib Documentation, Release 0.3

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection 10th Int. Conf. on Image Anal. and Proc.,
Venice, Italy (1999), 659-664.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the A
Priori rule:

The competence level is estimated based on the probability of correct classification of the base classifier
𝑐𝑖, considering all samples in the region of competence. This method also weights the influence of each
training sample according to its Euclidean distance to the query instance. The closest samples have a
higher influence in the computation of the competence level. The competence level estimate is represented
by the following equation:

𝛿𝑖,𝑗 =

∑︀𝐾
𝑘=1 𝑃 (𝜔𝑙 | x𝑘 ∈ 𝜔𝑙, 𝑐𝑖)𝑊𝑘∑︀𝐾

𝑘=1 𝑊𝑘

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

3.2. API Reference 23

deslib Documentation, Release 0.3

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

24 Chapter 3. API Reference

deslib Documentation, Release 0.3

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Local Class Accuracy (LCA)

class deslib.dcs.lca.LCA(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1, ran-
dom_state=None, knn_classifier=’knn’, DSEL_perc=0.5)

Local Class Accuracy (LCA).

Evaluates the competence level of each individual classifiers and select the most competent one to predict the
label of each test sample. The competence of each base classifier is calculated based on its local accuracy with
respect to some output class. Consider a classifier 𝑐𝑖 that assigns a test sample to class 𝑤𝑙. The competence level
of 𝑐𝑖 is estimated by the percentage of the local training samples assigned to class 𝑤𝑙 that it predicts the correct
class label.

The LCA method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

3.2. API Reference 25

deslib Documentation, Release 0.3

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the local
class accuracy method.

In this algorithm the k-Nearest Neighbors of the test sample are estimated. Then, the local accuracy of the
base classifiers is estimated by its classification accuracy taking into account only the samples from the
class 𝑤𝑙 in this neighborhood. In this case, 𝑤𝑙 is the class predicted by the base classifier 𝑐𝑖, for the query
sample. The competence level estimate is represented by the following equation:

𝛿𝑖,𝑗 =

∑︀
x𝑘∈𝜔𝑙

𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)∑︀𝐾
𝑘=1 𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

26 Chapter 3. API Reference

deslib Documentation, Release 0.3

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

3.2. API Reference 27

deslib Documentation, Release 0.3

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Multiple Classifier Behaviour (MCB)

class deslib.dcs.mcb.MCB(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, similarity_threshold=0.7, selection_method=’diff’,
diff_thresh=0.1, random_state=None, knn_classifier=’knn’,
DSEL_perc=0.5)

Multiple Classifier Behaviour (MCB).

The MCB method evaluates the competence level of each individual classifiers taking into account the local
accuracy of the base classifier in the region of competence. The region of competence is defined using the k-NN
and behavioral knowledge space (BKS) method. First the k-nearest neighbors of the test sample are computed.
Then, the set containing the k-nearest neighbors is filtered based on the similarity of the query sample and its
neighbors using the decision space (BKS representation).

A single classifier 𝑐𝑖 is selected only if its competence level is significantly higher than that of the other base
classifiers in the pool (higher than a pre-defined threshold). Otherwise, all classifiers in the pool are combined
using the majority voting rule. The selection methodology can be modified by changing the hyper-parameter
selection_method.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

28 Chapter 3. API Reference

deslib Documentation, Release 0.3

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Giacinto, Giorgio, and Fabio Roli. “Dynamic classifier selection based on multiple classifier behaviour.” Pattern
Recognition 34.9 (2001): 1879-1881.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

Huang, Yea S., and Ching Y. Suen. “A method of combining multiple experts for the recognition of uncon-
strained handwritten numerals.” IEEE Transactions on Pattern Analysis and Machine Intelligence 17.1 (1995):
90-94.

Huang, Yea S., and Ching Y. Suen. “The behavior-knowledge space method for combination of multiple classi-
fiers.” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1993.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the
Multiple Classifier Behaviour criterion.

The region of competence in this method is estimated taking into account the feature space and the decision
space (using the behaviour knowledge space method [4]). First, the k-Nearest Neighbors of the query
sample are defined in the feature space to compose the region of competence. Then, the similarity in
the BKS space between the query and the instances in the region of competence are estimated using the
following equations:

𝑆(x̃𝑗 , x̃𝑘) =
1

𝑀

𝑀∑︁
𝑖=1

𝑇 (x𝑗 ,x𝑘)

𝑇 (x𝑗 ,x𝑘) =

{︂
1 if 𝑐𝑖(x𝑗) = 𝑐𝑖(x𝑘),
0 if 𝑐𝑖(x𝑗) ̸= 𝑐𝑖(x𝑘).

Where 𝑆(x̃𝑗 , x̃𝑘) denotes the similarity between two samples based on the behaviour knowledge space
method (BKS). Instances with similarity lower than a predefined threshold are removed from the region of
competence. The competence level of the base classifiers are estimated as their classification accuracy in
the final region of competence.

3.2. API Reference 29

deslib Documentation, Release 0.3

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

30 Chapter 3. API Reference

deslib Documentation, Release 0.3

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Modified Local Accuracy (MLA)

class deslib.dcs.mla.MLA(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1, ran-
dom_state=None, knn_classifier=’knn’, DSEL_perc=0.5)

Modified Local Accuracy (MLA).

Similar to the LCA technique. The only difference is that the output of each base classifier is weighted by the
distance between the test sample and each pattern in the region of competence for the estimation of the classifiers
competences. Only the classifier that achieved the highest competence level is select to predict the label of the
test sample x.

The MLA method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

3.2. API Reference 31

deslib Documentation, Release 0.3

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the
Modified Local Accuracy (MLA) method.

The competence level of the base classifiers is estimated by its classification accuracy taking into account
only the samples belonging to a given class 𝑤𝑙.In this case, 𝑤𝑙 is the class predicted by the base classifier
𝑐𝑖, for the query sample. This method also weights the influence of each training sample according to its
Euclidean distance to the query instance. The closest samples have a higher influence in the computation
of the competence level. The competence level estimate is represented by the following equation:

𝛿𝑖,𝑗 =

𝐾∑︁
𝑘=1

𝑃 (𝜔𝑙 | x𝑘 ∈ 𝜔𝑙, 𝑐𝑖)𝑊𝑘

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

32 Chapter 3. API Reference

deslib Documentation, Release 0.3

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

3.2. API Reference 33

deslib Documentation, Release 0.3

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Overall Local Accuracy (OLA)

class deslib.dcs.ola.OLA(pool_classifiers=None, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1, ran-
dom_state=None, knn_classifier=’knn’, DSEL_perc=0.5)

Overall Classifier Accuracy (OLA).

The OLA method evaluates the competence level of each individual classifiers and select the most competent one
to predict the label of each test sample x. The competence of each base classifier is calculated as its classification
accuracy in the neighborhood of x (region of competence).

The LCA method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

34 Chapter 3. API Reference

deslib Documentation, Release 0.3

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample.

The competences for each base classifier 𝑐𝑖 is estimated by its classification accuracy considering the k-
Nearest Neighbors (region of competence). The competence level estimate is represented by the following
equation:

𝛿𝑖,𝑗 =
1

𝐾

𝐾∑︁
𝑘=1

𝑃 (𝜔𝑙 | x𝑘 ∈ 𝜔𝑙, 𝑐𝑖)

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

3.2. API Reference 35

deslib Documentation, Release 0.3

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

36 Chapter 3. API Reference

deslib Documentation, Release 0.3

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Modified Rank

class deslib.dcs.rank.Rank(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, selection_method=’best’, diff_thresh=0.1,
random_state=None, knn_classifier=’knn’, DSEL_perc=0.5)

Modified Classifier Rank.

The modified classifier rank method evaluates the competence level of each individual classifiers and select
the most competent one to predict the label of each test sample 𝑥. The competence of each base classifier is
calculated as the number of correctly classified samples, starting from the closest neighbor of 𝑥. The classifier
with the highest number of correctly classified samples is considered the most competent.

The Rank method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

3.2. API Reference 37

deslib Documentation, Release 0.3

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

M. Sabourin, A. Mitiche, D. Thomas, G. Nagy, Classifier combination for handprinted digit recognition, Inter-
national Conference on Document Analysis and Recognition (1993) 163–166.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample using
the modified ranking scheme. The rank of the base classifier is estimated by the number of consecutive
correctly classified samples in the defined region of competence.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

38 Chapter 3. API Reference

deslib Documentation, Release 0.3

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

3.2. API Reference 39

deslib Documentation, Release 0.3

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

3.2.2 Dynamic Ensemble Selection (DES)

Dynamic ensemble selection strategies refer to techniques that select an ensemble of classifier rather than a single one.
All base classifiers that attain a minimum competence level are selected to compose the ensemble of classifiers.

The deslib.des provides a set of key dynamic ensemble selection algorithms (DES).

DES base class

class deslib.des.base.BaseDES(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, mode=’selection’,
needs_proba=False, random_state=None, knn_classifier=’knn’,
DSEL_perc=0.5)

Base class for a Dynamic Ensemble Selection (DES).

All dynamic ensemble selection techniques should inherit from this class.

Warning: This class should not be instantiated directly, use derived classes instead.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

40 Chapter 3. API Reference

deslib Documentation, Release 0.3

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

needs_proba [Boolean (Default = False)] Determines whether the method always needs base
classifiers that estimate probabilities.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

classify_with_ds(query, predictions, probabilities=None, neighbors=None, distances=None,
DFP_mask=None)

Predicts the label of the corresponding query sample.

If self.mode == “selection”, the selected ensemble is combined using the majority voting rule

If self.mode == “weighting”, all base classifiers are used for classification, however their influence in the
final decision are weighted according to their estimated competence level. The weighted majority voting
scheme is used to combine the decisions of the base classifiers.

If self.mode == “hybrid”, A hybrid Dynamic selection and weighting approach is used. First an ensemble
with the competent base classifiers are selected. Then, their decisions are aggregated using the weighted
majority voting rule according to its competence level estimates.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifier
for all test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples. (For methods that always require probabilities
from the base classifiers).

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

3.2. API Reference 41

deslib Documentation, Release 0.3

DFP_mask [array of shape = [n_samples, n_classifiers]] Mask containing 1 for the selected
base classifier and 0 otherwise.

Returns

predicted_label [array of shape = [n_samples]] Predicted class label for each test example.

estimate_competence(query, neighbors, distances=None, predictions=None)
Estimate the competence of each base classifier 𝑐𝑖 the classification of the query sample x. Returns an
array containing the level of competence estimated for each base classifier. The size of the vector is equals
to the size of the generated_pool of classifiers.

Parameters

query [array of shape = [n_samples, n_features]] The test examples

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

estimate_competence_from_proba(query, neighbors, probabilities, distances=None)
estimate the competence of each base classifier 𝑐𝑖 the classification of the query sample x, for methods that
require probabilities.

Returns an array containing the level of competence estimated for each base classifier. The size of the
vector is equals to the size of the generated_pool of classifiers.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all samples.

Returns

competences [array = [n_samples, n_classifiers]] Competence level estimated for each base
classifier and test example.

predict_proba_with_ds(query, predictions, probabilities, neighbors=None, distances=None,
DFP_mask=None)

Predicts the posterior probabilities of the corresponding query.

If self.mode == “selection”, the selected ensemble is used to estimate the probabilities. The average rule
is used to give probabilities estimates.

If self.mode == “weighting”, all base classifiers are used for estimating the probabilities, however their
influence in the final decision are weighted according to their estimated competence level. A weighted
average method is used to give the probabilities estimates.

42 Chapter 3. API Reference

deslib Documentation, Release 0.3

If self.mode == “Hybrid”, A hybrid Dynamic selection and weighting approach is used. First an ensemble
with the competent base classifiers are selected. Then, their decisions are aggregated using a weighted
average rule to give the probabilities estimates.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifier
for all test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all samples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

DFP_mask [array of shape = [n_samples, n_classifiers]] Mask containing 1 for the selected
base classifier and 0 otherwise.

Returns

predicted_proba [array = [n_samples, n_classes]] The probability estimates for all test ex-
amples.

select(competences)
Select the most competent classifiers to compose an ensemble for the classification of the query sample X.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Estimated competence level of
each base classifier for each test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected. False otherwise.

META-DES

class deslib.des.meta_des.METADES(pool_classifiers=None, meta_classifier=None,
k=7, Kp=5, Hc=1.0, selection_threshold=0.5,
mode=’selection’, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

Meta learning for dynamic ensemble selection (META-DES).

The META-DES framework is based on the assumption that the dynamic ensemble selection problem can be
considered as a meta-problem. This meta-problem uses different criteria regarding the behavior of a base clas-
sifier 𝑐𝑖, in order to decide whether it is competent enough to classify a given test sample.

The framework performs a meta-training stage, in which, the meta-features are extracted from each instance
belonging to the training and the dynamic selection dataset (DSEL). Then, the extracted meta-features are used
to train the meta-classifier 𝜆. The meta-classifier is trained to predict whether or not a base classifier 𝑐𝑖 is
competent enough to classify a given input sample.

When an unknown sample is presented to the system, the meta-features for each base classifier 𝑐𝑖 in relation to
the input sample are calculated and presented to the meta-classifier. The meta-classifier estimates the compe-
tence level of the base classifier 𝑐𝑖 for the classification of the query sample. Base classifiers with competence

3.2. API Reference 43

deslib Documentation, Release 0.3

level higher than a pre-defined threshold are selected. If no base classifier is selected, the whole pool is used for
classification.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

meta_classifier [sklearn.estimator (Default = None)] Classifier model used for the meta-
classifier. If None, a Multinomial naive Bayes classifier is used.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

Kp [int (Default = 5)] Number of output profiles used to estimate the competence of the base
classifiers.

Hc [float (Default = 1.0)] Sample selection threshold.

selection_threshold [float(Default = 0.5)] Threshold used to select the base classifier. Only the
base classifiers with competence level higher than the selection_threshold are selected to
compose the ensemble.

mode [String (Default = “selection”)] Determines the mode of META-des that is used (selec-
tion, weighting or hybrid).

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Cruz, R.M., Sabourin, R., Cavalcanti, G.D. and Ren, T.I., 2015. META-DES: A dynamic ensemble selection
framework using meta-learning. Pattern Recognition, 48(5), pp.1925-1935.

44 Chapter 3. API Reference

deslib Documentation, Release 0.3

Cruz, R.M., Sabourin, R. and Cavalcanti, G.D., 2015, July. META-des. H: a dynamic ensemble selection tech-
nique using meta-learning and a dynamic weighting approach. In Neural Networks (IJCNN), 2015 International
Joint Conference on (pp. 1-8).

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence_from_proba(query, neighbors, probabilities, distances=None)
Estimate the competence of each base classifier 𝑐𝑖 the classification of the query sample. This method
received an array with the pre-calculated probability estimates for each query.

First, the meta-features of each base classifier 𝑐𝑖 for the classification of the query sample are estimated.
These meta-features are passed down to the meta-classifier 𝜆 for the competence level estimation.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
obtained by each each base classifier for each query sample.

Returns

competences [array of shape = [n_samples, n_classifiers]] The competence level estimated
for each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

This method also extracts the meta-features and trains the meta-classifier 𝜆 if the meta-classifier was not
yet trained.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

3.2. API Reference 45

deslib Documentation, Release 0.3

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold defined
in self.selection_threshold.

Parameters

competences [array of shape = [n_samples, n_classifiers]] The competence level estimated
for each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

DES Clustering

class deslib.des.des_clustering.DESClustering(pool_classifiers=None, cluster-
ing=None, with_IH=False, safe_k=None,
IH_rate=0.3, pct_accuracy=0.5,
pct_diversity=0.33, more_diverse=True,
metric=’DF’, n_clusters=5, ran-
dom_state=None, DSEL_perc=0.5)

Dynamic ensemble selection-Clustering (DES-Clustering).

This method selects an ensemble of classifiers taking into account the accuracy and diversity of the base classi-
fiers. The K-means algorithm is used to define the region of competence. For each cluster, the N most accurate
classifiers are first selected. Then, the J more diverse classifiers from the N most accurate classifiers are selected
to compose the ensemble.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

clustering [sklearn.cluster (Default = None)] The clustering model used to estimate the region
of competence. If None, a KMeans with K = 5 is used.

pct_accuracy [float (Default = 0.5)] Percentage of base classifiers selected based on accuracy

46 Chapter 3. API Reference

deslib Documentation, Release 0.3

pct_diversity [float (Default = 0.33)] Percentage of base classifiers selected based n diversity

more_diverse [Boolean (Default = True)] Whether we select the most or the least diverse clas-
sifiers to add to the pre-selected ensemble

metric [String (Default = ‘df’)] Metric used to estimate the diversity of the base classifiers. Can
be either the double fault (df), Q-statistics (Q), or error correlation.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Soares, R. G., Santana, A., Canuto, A. M., & de Souto, M. C. P. “Using accuracy and more_diverse to select
classifiers to build ensembles.” International Joint Conference on Neural Networks (IJCNN)., 2006.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
Get the competence estimates of each base classifier 𝑐𝑖 for the classification of the query sample.

In this case, the competences were already pre-calculated for each cluster. So this method computes the
nearest cluster and get the pre-calculated competences of the base classifiers for the corresponding cluster.

Parameters

query [array of shape = [n_samples, n_features]] The query sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array = [n_samples, n_classifiers]] The competence level estimated for each
base classifier.

fit(X, y)
Train the DS model by setting the Clustering algorithm and pre-processing the information required to
apply the DS methods.

First the data is divided into K clusters. Then, for each cluster, the N most accurate classifiers are first
selected. Then, the J more diverse classifiers from the N most accurate classifiers are selected to compose
the ensemble of the corresponding cluster. An ensemble of classifiers is assigned to each of the K clusters.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

3.2. API Reference 47

deslib Documentation, Release 0.3

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(query)
Select an ensemble with the most accurate and most diverse classifier for the classification of the query.

The ensemble for each cluster was already pre-calculated in the fit method. So, this method calculates the
closest cluster, and returns the ensemble associated to this cluster.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

Returns

selected_classifiers [array of shape = [n_samples, self.k]] Indices of the selected base clas-
sifier for each test example.

Dynamic Ensemble Selection performance (DES-P)

class deslib.des.des_p.DESP(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, mode=’selection’, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

Dynamic ensemble selection-Performance(DES-P).

This method selects all base classifiers that achieve a classification performance, in the region of competence,
that is higher than the random classifier (RC). The performance of the random classifier is defined by RC = 1/L,

48 Chapter 3. API Reference

deslib Documentation, Release 0.3

where L is the number of classes in the problem. If no base classifier is selected, the whole pool is used for
classification.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woloszynski, Tomasz, et al. “A measure of competence based on random classification for dynamic ensemble
selection.” Information Fusion 13.3 (2012): 207-213.

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample base on its
local performance.

𝛿𝑖,𝑗 = 𝑃 (𝑐𝑖 | 𝜃𝑗)−
1

𝐿

3.2. API Reference 49

deslib Documentation, Release 0.3

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

50 Chapter 3. API Reference

deslib Documentation, Release 0.3

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects all base classifiers that obtained a local classification accuracy higher than the Random Classifier.
The performance of the random classifier is denoted 1/L, where L is the number of classes in the problem.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

DES-KNN

class deslib.des.des_knn.DESKNN(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, pct_accuracy=0.5,
pct_diversity=0.3, more_diverse=True, metric=’DF’, ran-
dom_state=None, knn_classifier=’knn’, DSEL_perc=0.5)

Dynamic ensemble Selection KNN (DES-KNN).

This method selects an ensemble of classifiers taking into account the accuracy and diversity of the base clas-
sifiers. The k-NN algorithm is used to define the region of competence. The N most accurate classifiers in the
region of competence are first selected. Then, the J more diverse classifiers from the N most accurate classifiers
are selected to compose the ensemble.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

pct_accuracy [float (Default = 0.5)] Percentage of base classifiers selected based on accuracy

pct_diversity [float (Default = 0.3)] Percentage of base classifiers selected based n diversity

more_diverse [Boolean (Default = True)] Whether we select the most or the least diverse clas-
sifiers to add to the pre-selected ensemble

metric [String (Default = ‘df’)] Metric used to estimate the diversity of the base classifiers. Can
be either the double fault (df), Q-statistics (Q), or error correlation.

3.2. API Reference 51

deslib Documentation, Release 0.3

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Soares, R. G., Santana, A., Canuto, A. M., & de Souto, M. C. P. “Using accuracy and more_diverse to select
classifiers to build ensembles.” International Joint Conference on Neural Networks (IJCNN)., 2006.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample.

The competence is estimated using the accuracy and diversity criteria. First the classification accuracy of
the base classifiers in the region of competence is estimated. Then the diversity of the base classifiers is
estimated.

The method returns two arrays: One containing the accuracy and the other the diversity of each base
classifier.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

accuracy [array of shape = [n_samples, n_classifiers}] Local Accuracy estimates (compe-
tences) of the base classifiers for all query samples.

diversity [array of shape = [n_samples, n_classifiers}] Average pairwise diversity of each
base classifiers for all test examples.

52 Chapter 3. API Reference

deslib Documentation, Release 0.3

Notes

This technique uses both the accuracy and diversity information to perform dynamic selection. For this
reason the function returns a dictionary containing these two values instead of a single ndarray containing
the competence level estimates for each base classifier.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(accuracy, diversity)
Select an ensemble containing the N most accurate ant the J most diverse classifiers for the classification
of the query sample.

Parameters

3.2. API Reference 53

deslib Documentation, Release 0.3

accuracy [array of shape = [n_samples, n_classifiers]] Local Accuracy estimates (compe-
tence) of each base classifiers.

diversity [array of shape = [n_samples, n_classifiers]] Average pairwise diversity of each
base classifiers.

Returns

selected_classifiers [array of shape = [n_samples, self.J]] Array containing the indices of
the J selected base classifier for each test example.

k-Nearest Output Profiles (KNOP)

class deslib.des.knop.KNOP(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

k-Nearest Output Profiles (KNOP).

This method selects all classifiers that correctly classified at least one sample belonging to the region of com-
petence of the query sample. In this case, the region of competence is estimated using the decisions of the base
classifier (output profiles). Thus, the similarity between the query and the validation samples are measured in
the decision space rather than the feature space. Each selected classifier has a number of votes equals to the
number of samples in the region of competence that it predicts the correct label. The votes obtained by all base
classifiers are aggregated to obtain the final ensemble decision.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

54 Chapter 3. API Reference

deslib Documentation, Release 0.3

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Cavalin, Paulo R., Robert Sabourin, and Ching Y. Suen. “LoGID: An adaptive framework combining local and
global incremental learning for dynamic selection of ensembles of HMMs.” Pattern Recognition 45.9 (2012):
3544-3556.

Cavalin, Paulo R., Robert Sabourin, and Ching Y. Suen. “Dynamic selection approaches for multiple classifier
systems.” Neural Computing and Applications 22.3-4 (2013): 673-688.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence_from_proba(query, probabilities, neighbors=None, distances=None)
The competence of the base classifiers is simply estimated as the number of samples in the region of
competence that it correctly classified. This method received an array with the pre-calculated probability
estimates for each query.

This information is later used to determine the number of votes obtained for each base classifier.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
obtained by each each base classifier for each query sample.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-process the information required to apply the
DS methods. In this case, the scores of the base classifiers for the dynamic selection dataset (DSEL) are
pre-calculated to transform each sample in DSEL into an output profile.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

3.2. API Reference 55

deslib Documentation, Release 0.3

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the base classifiers for the classification of the query sample.

Each base classifier can be selected more than once. The number of times a base classifier is selected
(votes) is equals to the number of samples it correctly classified in the region of competence.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

k-Nearest Oracle-Eliminate (KNORA-E)

class deslib.des.knora_e.KNORAE(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

k-Nearest Oracles Eliminate (KNORA-E).

This method searches for a local Oracle, which is a base classifier that correctly classify all samples belonging
to the region of competence of the test sample. All classifiers with a perfect performance in the region of
competence are selected (local Oracles). In the case that no classifier achieves a perfect accuracy, the size of
the competence region is reduced (by removing the farthest neighbor) and the performance of the classifiers are

56 Chapter 3. API Reference

deslib Documentation, Release 0.3

re-evaluated. The outputs of the selected ensemble of classifiers is combined using the majority voting scheme.
If no base classifier is selected, the whole pool is used for classification.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
Estimate the competence of the base classifiers. In the case of the KNORA-E technique, the classifiers
are only considered competent when they achieve a 100% accuracy in the region of competence. For each
base, we estimate the maximum size of the region of competence that it is a local oracle. The competence
level estimate is then the maximum size of the region of competence that the corresponding base classifier
is considered a local Oracle.

Parameters

3.2. API Reference 57

deslib Documentation, Release 0.3

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

58 Chapter 3. API Reference

deslib Documentation, Release 0.3

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects all base classifiers that obtained a local accuracy of 100% in the region of competence (i.e., local
oracle). In the case that no base classifiers obtain 100% accuracy, the size of the region of competence is
reduced and the search for the local oracle is restarted.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

Notes

Instead of re-applying the method several times (reducing the size of the region of competence), we com-
pute the number of consecutive correct classification of each base classifier starting from the closest neigh-
bor to the more distant in the estimate_competence function. The number of consecutive correct classi-
fication represents the size of the region of competence in which the corresponding base classifier is an
Local Oracle. Then, we select all base classifiers with the maximum value for the number of consecutive
correct classification. This speed up the selection process.

k-Nearest Oracle Union (KNORA-U)

class deslib.des.knora_u.KNORAU(pool_classifiers=None, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

k-Nearest Oracles Union (KNORA-U).

This method selects all classifiers that correctly classified at least one sample belonging to the region of compe-
tence of the query sample. Each selected classifier has a number of votes equals to the number of samples in the
region of competence that it predicts the correct label. The votes obtained by all base classifiers are aggregated
to obtain the final ensemble decision.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

3.2. API Reference 59

deslib Documentation, Release 0.3

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
The competence of the base classifiers is simply estimated as the number of samples in the region of
competence that it correctly classified.

This information is later used to determine the number of votes obtained for each base classifier.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

60 Chapter 3. API Reference

deslib Documentation, Release 0.3

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the base classifiers for the classification of the query sample.

Each base classifier can be selected more than once. The number of times a base classifier is selected
(votes) is equals to the number of samples it correctly classified in the region of competence.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

3.2. API Reference 61

deslib Documentation, Release 0.3

DES Multiclass Imbalance (DES-MI)

class deslib.des.des_mi.DESMI(pool_classifiers=None, k=7, pct_accuracy=0.4, alpha=0.9,
DFP=False, with_IH=False, safe_k=None, IH_rate=0.3, ran-
dom_state=None, knn_classifier=’knn’, DSEL_perc=0.5)

Dynamic ensemble Selection for multi-class imbalanced datasets (DES-MI).

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

alpha [float (Default = 0.9)] Scaling coefficient to regulate the weight value

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

García, S.; Zhang, Z.-L.; Altalhi, A.; Alshomrani, S. & Herrera, F. “Dynamic ensemble selection for multi-class
imbalanced datasets.” Information Sciences, 2018, 445-446, 22 - 37

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances=None, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample. Returns
a ndarray containing the competence level of each base classifier.

62 Chapter 3. API Reference

deslib Documentation, Release 0.3

The competence is estimated using the accuracy criteria. The accuracy is estimated by the weighted results
of classifiers who correctly classify the members in the competence region. The weight of member 𝑥𝑖 is
related to the number of samples of the same class of 𝑥𝑖 in the training dataset. For detail, please see the
first reference, Algorithm 2.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

accuracy [array of shape = [n_samples, n_classifiers}] Local Accuracy estimates (compe-
tences) of the base classifiers for all query samples.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

3.2. API Reference 63

deslib Documentation, Release 0.3

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select an ensemble containing the N most accurate classifiers for the classification of the query sample.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence estimates of each
base classifiers for all query samples.

Returns

selected_classifiers [array of shape = [n_samples, self.N]] Matrix containing the indices of
the N selected base classifier for each test example.

Probabilistic

class deslib.des.probabilistic.BaseProbabilistic(pool_classifiers=None, k=None,
DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3,
mode=’selection’, se-
lection_threshold=None,
random_state=None,
knn_classifier=’knn’,
DSEL_perc=0.5)

Base class for a DS method based on the potential function model. All DS methods based on the Potential
function should inherit from this class.

Warning: This class should not be used directly. Use derived classes instead.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

64 Chapter 3. API Reference

deslib Documentation, Release 0.3

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection,
Pattern Recognition 44 (2011) 2656–2668.

L. Rastrigin, R. Erenstein, Method of collective recognition, Vol. 595, 1981, (in Russian).

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

3.2. API Reference 65

deslib Documentation, Release 0.3

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

static potential_func(dist)
Gaussian potential function to decrease the influence of the source of competence as the distance between
x𝑘 and the query x𝑞 increases. The function is computed using the following equation:

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑒𝑥𝑝(−𝑑𝑖𝑠𝑡(x𝑘,x𝑞)
2)

where dist represents the Euclidean distance between x𝑘 and x𝑞

Parameters

dist [array of shape = [self.n_samples]] distance between the corresponding sample to the
query

Returns

The result of the potential function for each value in (dist)

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

source_competence()
Method used to estimate the source of competence at each data point.

Each DS technique based on this paradigm should define its computation of C_src

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

Randomized Reference Classifier (RRC)

class deslib.des.probabilistic.RRC(pool_classifiers=None, k=None, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3,
mode=’selection’, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

DES technique based on the Randomized Reference Classifier method (DES-RRC).

Parameters

66 Chapter 3. API Reference

deslib Documentation, Release 0.3

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

3.2. API Reference 67

deslib Documentation, Release 0.3

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

68 Chapter 3. API Reference

deslib Documentation, Release 0.3

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

source_competence()
Calculates the source of competence using the randomized reference classifier (RRC) method.

The source of competence C_src at the validation point x𝑘 calculated using the probabilistic model based
on the supports obtained by the base classifier and randomized reference classifier (RRC) model. The
probabilistic modeling of the classifier competence is calculated using the ccprmod function.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

DES-Kullback Leibler

class deslib.des.probabilistic.DESKL(pool_classifiers=None, k=None, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3,
mode=’selection’, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

Dynamic Ensemble Selection-Kullback-Leibler divergence (DES-KL).

This method estimates the competence of the classifier from the information theory perspective. The competence
of the base classifiers is calculated as the KL divergence between the vector of class supports produced by the
base classifier and the outputs of a random classifier (RC) RC = 1/L, L being the number of classes in the
problem. Classifiers with a competence higher than the competence of the random classifier is selected.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

3.2. API Reference 69

deslib Documentation, Release 0.3

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

Woloszynski, Tomasz, et al. “A measure of competence based on random classification for dynamic ensemble
selection.” Information Fusion 13.3 (2012): 207-213.

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply

70 Chapter 3. API Reference

deslib Documentation, Release 0.3

the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

3.2. API Reference 71

deslib Documentation, Release 0.3

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

source_competence()
Calculates the source of competence using the KL divergence method.

The source of competence C_src at the validation point x𝑘 is calculated by the KL divergence between
the vector of class supports produced by the base classifier and the outputs of a random classifier (RC) RC
= 1/L, L being the number of classes in the problem. The value of C_src is negative if the base classifier
misclassified the instance x𝑘.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

DES-Minimum Difference

class deslib.des.probabilistic.MinimumDifference(pool_classifiers=None,
k=None, DFP=False,
with_IH=False, safe_k=None,
IH_rate=0.3, mode=’selection’,
random_state=None,
knn_classifier=’knn’,
DSEL_perc=0.5)

Computes the competence level of the classifiers based on the difference between the support obtained by each
class. The competence level at a data point x𝑘 is equal to the minimum difference between the support obtained
to the correct class and the support obtained for different classes.

The influence of each sample xk is defined according to a Gaussian function model[2]. Samples that are closer
to the query have a higher influence in the competence estimation.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

72 Chapter 3. API Reference

deslib Documentation, Release 0.3

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

[1] B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design
of multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

[2] Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

3.2. API Reference 73

deslib Documentation, Release 0.3

self [object] Returns self.

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

source_competence()
Calculates the source of competence using the Minimum Difference method.

The source of competence C_src at the validation point x𝑘 calculated by the Minimum Difference between
the supports obtained to the correct class and the support obtained by the other classes

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

74 Chapter 3. API Reference

deslib Documentation, Release 0.3

DES-Exponential

class deslib.des.probabilistic.Exponential(pool_classifiers=None, k=None, DFP=False,
safe_k=None, with_IH=False, IH_rate=0.3,
mode=’selection’, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

The source of competence C_src at the validation point x𝑘 is a product of two factors: The absolute value of the
competence and the sign. The value of the source competence is inverse proportional to the normalized entropy
of its supports vector. The sign of competence is simply determined by correct/incorrect classification of x𝑘 [1].

The influence of each sample x𝑘 is defined according to a Gaussian function model[2]. Samples that are closer
to the query have a higher influence in the competence estimation.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

[1] B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design
of multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

3.2. API Reference 75

deslib Documentation, Release 0.3

[2] Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

76 Chapter 3. API Reference

deslib Documentation, Release 0.3

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

source_competence()
The source of competence C_src at the validation point x𝑘 is a product of two factors: The absolute
value of the competence and the sign. The value of the source competence is inverse proportional to the
normalized entropy of its supports vector.The sign of competence is simply determined by correct/incorrect
classification of the instance x𝑘.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

DES-Logarithmic

class deslib.des.probabilistic.Logarithmic(pool_classifiers=None, k=None, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3,
mode=’selection’, random_state=None,
knn_classifier=’knn’, DSEL_perc=0.5)

This method estimates the competence of the classifier based on the logarithmic difference between the supports
obtained by the base classifier.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

3.2. API Reference 77

deslib Documentation, Release 0.3

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

knn_classifier [{‘knn’, ‘faiss’, None} (Default = ‘knn’)] The algorithm used to estimate the
region of competence:

• ‘knn’ will use KNeighborsClassifier from sklearn

• ‘faiss’ will use Facebook’s Faiss similarity search through the class
FaissKNNClassifier

• None, will use sklearn KNeighborsClassifier.

DSEL_perc [float (Default = 0.5)] Percentage of the input data used to fit DSEL. Note: This
parameter is only used if the pool of classifier is None or unfitted.

References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized reference classifier for dynamic
ensemble selection, in: International Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.

estimate_competence(query, neighbors, distances, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

neighbors [array of shale = [n_samples, n_neighbors]] Indices of the k nearest neighbors
according for each test sample.

distances [array of shale = [n_samples, n_neighbors]] Distances of the k nearest neighbors
according for each test sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

78 Chapter 3. API Reference

deslib Documentation, Release 0.3

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

3.2. API Reference 79

deslib Documentation, Release 0.3

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is selected, False otherwise.

source_competence()
The source of competence C_src at the validation point x𝑘 is calculated by logarithm function in the
support obtained by the base classifier.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

3.2.3 Static ensembles

This module provides the implementation of static ensemble techniques that are usually used as a baseline for the
comparison of DS methods: Single Best (SB), Static Selection (SS), Stacked classifier and Oracle.

The deslib.static provides a set of static ensemble methods which are often used as a baseline to compare the
performance of dynamic selection algorithms.

Oracle

class deslib.static.oracle.Oracle(pool_classifiers=None, random_state=None)
Abstract method that always selects the base classifier that predicts the correct label if such classifier exists.
This method is often used to measure the upper-limit performance that can be achieved by a dynamic classifier
selection technique. It is used as a benchmark by several dynamic selection algorithms

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

References

Kuncheva, Ludmila I. “A theoretical study on six classifier fusion strategies.” IEEE Transactions on Pattern
Analysis & Machine Intelligence, (2002): 281-286.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

fit(X, y)
Fit the model according to the given training data.

Parameters

80 Chapter 3. API Reference

deslib Documentation, Release 0.3

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

predict(X, y)
Prepare the labels using the Oracle model.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

y [array of shape = [n_samples]] Class labels of each sample in X.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

score(X, y)
Prepare the labels using the Oracle model.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

y [array of shape = [n_samples]] Class labels of each sample in X.

Returns

accuracy [float] Classification accuracy of the Oracle model.

Single Best

class deslib.static.single_best.SingleBest(pool_classifiers=None, random_state=None)
Classification method that selects the classifier in the pool with highest score to be used for classification.
Usually, the performance of the single best classifier is estimated based on the validation data.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

3.2. API Reference 81

deslib Documentation, Release 0.3

fit(X, y)
Fit the model by selecting the base classifier with the highest accuracy in the dataset. The single best
classifier is kept in self.best_clf and its index is kept in self.best_clf_index.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

predict(X)
Predict the label of each sample in X and returns the predicted label.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for each class for each sample in X. The returned probability estimates
for all classes are ordered by the label of classes.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Posterior probabilities estimates
for each class.

Static Selection

class deslib.static.static_selection.StaticSelection(pool_classifiers=None,
pct_classifiers=0.5, ran-
dom_state=None)

Ensemble model that selects N classifiers with the best performance in a dataset

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

pct_classifiers [float (Default = 0.5)] Percentage of base classifier that should be selected by
the selection scheme.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

82 Chapter 3. API Reference

deslib Documentation, Release 0.3

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

fit(X, y)
Fit the static selection model by select an ensemble of classifier containing the base classifiers with highest
accuracy in the given dataset.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self [object] Returns self.

predict(X)
Predict the label of each sample in X and returns the predicted label.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

Stacked Classifier

class deslib.static.stacked.StackedClassifier(pool_classifiers=None,
meta_classifier=None, ran-
dom_state=None)

A Stacking classifier.

Parameters

pool_classifiers [list of classifiers (Default = None)] The generated_pool of classifiers trained
for the corresponding classification problem. Each base classifiers should support the
method “predict”. If None, then the pool of classifiers is a bagging classifier.

meta_classifier [object or None, optional (default=None)] Classifier model used to aggregate
the output of the base classifiers. If None, a LogisticRegression classifier is used.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

References

Wolpert, David H. “Stacked generalization.” Neural networks 5, no. 2 (1992): 241-259.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

fit(X, y)
Fit the model by training a meta-classifier on the outputs of the base classifiers

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

3.2. API Reference 83

deslib Documentation, Release 0.3

y [array of shape = [n_samples]] class labels of each example in X.

predict(X)
Predict the label of each sample in X and returns the predicted label.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

predict_proba(X)
Predict the label of each sample in X and returns the predicted label.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

3.2.4 Utils

Utility functions for ensemble methods such as diversity and aggregation methods.

The deslib.util This module includes various utilities. They are divided into four parts:

deslib.util.aggregation - Implementation of aggregation functions such as majority voting and averaging. Such func-
tions can be applied to any list of classifiers.

deslib.util.diversity - Implementation of different measures of diversity between classifiers.

deslib.util.prob_functions - Functions to estimate the competence of a base classifier based on the probability estimates.

deslib.util.instance_hardness - Functions to measure the hardness level of a given instance

deslib.util.faiss_knn_wrapper - Wrapper for Facebook AI fast similarity search on GPU

deslib.util.datasets - Provides methods to generate synthetic data.

84 Chapter 3. API Reference

deslib Documentation, Release 0.3

Diversity

This file contains the implementation of key diversity measures found in the ensemble literature:

• Double Fault

• Negative Double fault

• Q-statistics

• Ratio of errors

The implementation are made according to the specifications from the book “Combining Pattern Classifiers”.

deslib.util.diversity.Q_statistic(y, y_pred1, y_pred2)
Calculates the Q-statistics diversity measure between a pair of classifiers. The Q value is in a range [-1, 1].
Classifiers that tend to classify the same object correctly will have positive values of Q, and Q = 0 for two
independent classifiers.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

Q [The q-statistic measure between two classifiers]

deslib.util.diversity.agreement_measure(y, y_pred1, y_pred2)
Calculates the agreement measure between a pair of classifiers. This measure is calculated by the frequency that
both classifiers either obtained the correct or incorrect prediction for any given sample

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

agreement [The frequency at which both classifiers agrees]

deslib.util.diversity.compute_pairwise_diversity(targets, prediction_matrix, diver-
sity_func)

Computes the pairwise diversity matrix.

Parameters

targets [array of shape = [n_samples]:] Class labels of each sample in X.

prediction_matrix [array of shape = [n_samples, n_classifiers]:] Predicted class labels for each
classifier in the pool

diversity_func [Function] Function used to estimate the pairwise diversity

Returns

3.2. API Reference 85

deslib Documentation, Release 0.3

diversity [array of shape = [n_classifiers]] The average pairwise diversity matrix calculated for
the pool of classifiers

deslib.util.diversity.correlation_coefficient(y, y_pred1, y_pred2)
Calculates the correlation between two classifiers using oracle outputs. Coefficient is a value in a range [-1, 1].

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

rho [The correlation coefficient measured between two classifiers]

deslib.util.diversity.disagreement_measure(y, y_pred1, y_pred2)
Calculates the disagreement measure between a pair of classifiers. This measure is calculated by the frequency
that only one classifier makes the correct prediction.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

disagreement [The frequency at which both classifiers disagrees]

deslib.util.diversity.double_fault(y, y_pred1, y_pred2)
Calculates the double fault (df) measure. This measure represents the probability that both classifiers makes the
wrong prediction. A lower value of df means the base classifiers are less likely to make the same error. This
measure must be minimized to increase diversity.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

df [The double fault measure between two classifiers]

References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network ensembles for image classification
purposes.” Image and Vision Computing 19.9 (2001): 699-707.

deslib.util.diversity.negative_double_fault(y, y_pred1, y_pred2)
The negative of the double fault measure. This measure should be maximized for a higher diversity.

86 Chapter 3. API Reference

deslib Documentation, Release 0.3

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

df [The negative double fault measure between two classifiers]

References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network ensembles for image classification
purposes.” Image and Vision Computing 19.9 (2001): 699-707.

deslib.util.diversity.ratio_errors(y, y_pred1, y_pred2)
Calculates Ratio of errors diversity measure between a pair of classifiers. A higher value means that the base
classifiers are less likely to make the same errors. The ratio must be maximized for a higher diversity

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

ratio [The q-statistic measure between two classifiers]

References

Aksela, Matti. “Comparison of classifier selection methods for improving committee performance.” Multiple
Classifier Systems (2003): 159-159.

Aggregation

This file contains the implementation of different aggregation functions to combine the outputs of the base classifiers
to give the final decision.

deslib.util.aggregation.average_combiner(classifier_ensemble, X)
Ensemble combination using the Average rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

3.2. API Reference 87

deslib Documentation, Release 0.3

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.average_rule(predictions)
Apply the average fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] Vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.majority_voting(classifier_ensemble, X)
Apply the majority voting rule to predict the label of each sample in X.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.majority_voting_rule(votes)
Applies the majority voting rule to the estimated votes.

Parameters

votes [array of shape = [n_samples, n_classifiers],] The votes obtained by each classifier for
each sample.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.maximum_combiner(classifier_ensemble, X)
Ensemble combination using the Maximum rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.maximum_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] Vector of class supports
predicted by each base classifier for sample

88 Chapter 3. API Reference

deslib Documentation, Release 0.3

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.median_combiner(classifier_ensemble, X)
Ensemble combination using the Median rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.median_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] Vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.minimum_combiner(classifier_ensemble, X)
Ensemble combination using the Minimum rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.minimum_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] Vector of class supports
predicted by each base classifier for sample

Returns

list_proba [array of shape = [n_classifiers, n_samples, n_classes]] Probabilities predicted by
each base classifier in the ensemble for all samples in X.

deslib.util.aggregation.predict_proba_ensemble(classifier_ensemble, X)
Estimates the posterior probabilities of the give ensemble for each sample in X.

Parameters

3.2. API Reference 89

deslib Documentation, Release 0.3

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Posterior probabilities estimates
for each samples in X.

deslib.util.aggregation.predict_proba_ensemble_weighted(classifier_ensemble,
weights, X)

Estimates the posterior probabilities for each sample in X.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
to estimate the probabilities.

weights [array of shape = [n_samples, n_classifiers]] Weights associated to each base classifier
for each sample

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] posterior probabilities estimates for
each samples in X.

deslib.util.aggregation.product_combiner(classifier_ensemble, X)
Ensemble combination using the Product rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_classifiers, n_samples, n_classes]] Probabilities predicted
by each base classifier in the ensemble for all samples in X.

deslib.util.aggregation.product_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [array of shape = [n_samples, n_classifiers, n_classes]] Vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.weighted_majority_voting(classifier_ensemble, weights, X)
Apply the weighted majority voting rule to predict the label of each sample in X. The size of the weights vector
should be equal to the size of the ensemble.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] Containing the ensemble of classifiers used
in the aggregation scheme.

90 Chapter 3. API Reference

deslib Documentation, Release 0.3

weights [array of shape = [n_samples, n_classifiers]] Weights associated to each base classifier
for each sample

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.weighted_majority_voting_rule(votes, weights, la-
bels_set=None)

Applies the weighted majority voting rule based on the votes obtained by each base classifier and their respective
weights.

Parameters

votes [array of shape = [n_samples, n_classifiers],] The votes obtained by each classifier for
each sample.

weights [array of shape = [n_samples, n_classifiers]] Weights associated to each base classifier
for each sample

labels_set [(Default=None) set with the possible classes in the problem]

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

Probabilistic Functions

This file contains the implementation of several functions used to estimate the competence level of a base classifiers
based on posterior probabilities predicted for each class.

deslib.util.prob_functions.ccprmod(supports, idx_correct_label, B=20)
Python implementation of the ccprmod.m (Classifier competence based on probabilistic modelling) function.
Matlab code is available at: http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/
28391/versions/6/previews/ccprmod.m/index.html

Parameters

supports: array of shape = [n_samples, n_classes] Containing the supports obtained by the
base classifier for each class.

idx_correct_label: array of shape = [n_samples] containing the index of the correct class.

B [int (Default = 20)] number of points used in the calculation of the competence, higher values
result in a more accurate estimation.

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

References

T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection,
Pattern Recognition 44 (2011) 2656–2668.

3.2. API Reference 91

http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/28391/versions/6/previews/ccprmod.m/index.html
http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/28391/versions/6/previews/ccprmod.m/index.html

deslib Documentation, Release 0.3

Examples

>>> supports = [[0.3, 0.6, 0.1],[1.0/3, 1.0/3, 1.0/3]]
>>> idx_correct_label = [1,0]
>>> ccprmod(supports,idx_correct_label)
ans = [0.784953394056843, 0.332872292262951]

deslib.util.prob_functions.entropy_func(n_classes, supports, is_correct)
Calculate the entropy in the support obtained by the base classifier. The value of the source competence is inverse
proportional to the normalized entropy of its supports vector and the sign of competence is simply determined
by the correct/incorrect classification

Parameters

n_classes [int] The number of classes in the problem

supports: array of shape = [n_samples, n_classes] Containing the supports obtained by the
base classifier for each class.

is_correct: array of shape = [n_samples] Array with 1 whether the base classifier predicted
the correct label and -1 otherwise

Returns

C_src [array of shape = [n_samples]] Representing the classifier competences at each data point

References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

deslib.util.prob_functions.exponential_func(n_classes, support_correct)
Calculate the exponential function based on the support obtained by the base classifier for the correct class label.

Parameters

n_classes [int] The number of classes in the problem

support_correct: array of shape = [n_samples] containing the supports obtained by the base
classifier for the correct class

Returns

C_src [array of shape = [n_samples]] Representing the classifier competences at each data point

deslib.util.prob_functions.log_func(n_classes, support_correct)
Calculate the logarithm in the support obtained by the base classifier.

Parameters

n_classes [int] The number of classes in the problem

support_correct: array of shape = [n_samples] Containing the supports obtained by the base
classifier for the correct class

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

92 Chapter 3. API Reference

deslib Documentation, Release 0.3

References

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized reference classifier for dynamic
ensemble selection, in: International Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.

deslib.util.prob_functions.min_difference(supports, idx_correct_label)
The minimum difference between the supports obtained for the correct class and the vector of class supports.
The value of the source competence is negative if the sample is misclassified and positive otherwise.

Parameters

supports: array of shape = [n_samples, n_classes] Containing the supports obtained by the
base classifier for each class

idx_correct_label: array of shape = [n_samples] Containing the index of the correct class

Returns

C_src [array of shape = [n_samples]] Representing the classifier competences at each data point

References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

deslib.util.prob_functions.softmax(w, theta=1.0)
Takes an vector w of S N-element and returns a vectors where each column of the vector sums to 1, with elements
exponentially proportional to the respective elements in N.

Parameters

w [array of shape = [N, M]]

theta [float (default = 1.0)] used as a multiplier prior to exponentiation.

Returns

dist [array of shape = [N, M]] Which the sum of each row sums to 1 and the elements are
exponentially proportional to the respective elements in N

Instance Hardness

This file contains the implementation of different measures of instance hardness.

deslib.util.instance_hardness.hardness_region_competence(neighbors_idx, labels,
safe_k)

Calculate the Instance hardness of the sample based on its neighborhood. The sample is deemed hard to classify
when there is overlap between different classes in the region of competence. This method does not takes into
account the target label of the test sample

This hardness measure is used to select whether use DS or use the KNN for the classification of a given query
sample

Parameters

neighbors_idx [array of shape = [n_samples_test, k]] Indices of the nearest neighbors for each
considered sample

labels [array of shape = [n_samples_train]] labels associated with each training sample

safe_k [int] Number of neighbors used to estimate the hardness of the corresponding region

3.2. API Reference 93

deslib Documentation, Release 0.3

Returns

hardness [array of shape = [n_samples_test]] The Hardness level associated with each example.

References

Smith, M.R., Martinez, T. and Giraud-Carrier, C., 2014. An instance level analysis of data complexity. Machine
learning, 95(2), pp.225-256

deslib.util.instance_hardness.kdn_score(X, y, k)
Calculates the K-Disagreeing Neighbors score (KDN) of each sample in the input dataset.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

k [int] Neighborhood size for calculating the KDN score.

Returns

score [array of shape = [n_samples,1]] KDN score of each sample in X.

neighbors [array of shape = [n_samples,k]] Indexes of the k neighbors of each sample in X.

References

M. R. Smith, T. Martinez, C. Giraud-Carrier, An instance level analysis of data complexity, Machine Learning
95 (2) (2014) 225-256.

FAISS Wrapper

class deslib.util.faiss_knn_wrapper.FaissKNNClassifier(n_neighbors=5,
n_jobs=None, algo-
rithm=None)

Faiss KNN wrapper.

Parameters

n_neighbors [int (Default = 5)] Number of neighbors used in the nearest neighbor search.

n_jobs [int (Default = None)]

The number of jobs to run in parallel for both fit and predict. If -1, then the number of
jobs is set to the number of cores.

algorithm [str (Default = None)] Algorithm used for nearest

References

Johnson Jeff, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity search with gpus.” arXiv preprint
arXiv:1702.08734 (2017).

fit(X, y)
Fit the model according to the given training data.

Parameters

94 Chapter 3. API Reference

deslib Documentation, Release 0.3

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

kneighbors(X, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

n_neighbors [int] Number of neighbors to get (default is the value passed to the construc-
tor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned

Returns

dists [list of shape = [n_samples, k]] The distances between the query and each sample in
the region of competence. The vector is ordered in an ascending fashion.

idx [list of shape = [n_samples, k]] Indices of the instances belonging to the region of com-
petence of the given query sample.

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

preds [array, shape (n_samples,)] Class labels for samples in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

preds_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

Datasets

This file contains routines to generate 2D classification datasets that can be used to test the performance of different
machine learning algorithms.

• P2 Dataset

• Circle and Square

• Banana

• Banana 2

deslib.util.datasets.make_P2(size_classes, random_state=None)
Generate the P2 Dataset:

3.2. API Reference 95

deslib Documentation, Release 0.3

The P2 is a two-class problem, presented by Valentini[1], in which each class is defined in multiple decision
regions delimited by polynomial and trigonometric functions (E1, E2, E3 and E4):

𝑡𝑜

𝐸1(𝑥) = 𝑠𝑖𝑛(𝑥) + 5

𝐸2(𝑥) = (𝑥− 2)2 + 1

𝐸3(𝑥) = −0.1 · 𝑥2 + 0.6𝑠𝑖𝑛(4𝑥) + 8

𝐸4(𝑥) =
(𝑥− 10)2

2
+ 7.902(3.1)

Parameters

size_classes [list with the number of samples for each class.]

random_state [int, RandomState instance or None, optional (default=None)] If int, random_state is
the seed used by the random number generator; If RandomState instance, random_state is the
random number generator; If None, the random number generator is the RandomState instance
used by np.random.

Returns

X [array of shape = [size_classes, 2]] The generated data points.

y [array of shape = [size_classes]] Class labels associated with each class.

References

G. Valentini, An experimental bias-variance analysis of svm ensembles based on resampling techniques, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 35 (2005) 1252–1271.

deslib.util.datasets.make_banana(size_classes, na=0.1, random_state=None)
Generate the Banana dataset.

Parameters

size_classes [list with the number of samples for each class.]

na [float (Default = 0.2),] Noise amplitude. It must be < 1.0

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

Returns

X [array of shape = [size_classes, 2]] The generated data points.

y [array of shape = [size_classes]] Class labels associated with each class.

96 Chapter 3. API Reference

deslib Documentation, Release 0.3

References

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

deslib.util.datasets.make_banana2(size_classes, sigma=1, random_state=None)
Generate the Banana dataset similar to the Matlab PRTools toolbox.

Parameters

size_classes [list with the number of samples for each class.]

sigma [float (Default = 1),] variance of the normal distribution

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

Returns

X [array of shape = [size_classes, 2]] The generated data points.

y [array of shape = [size_classes]] Class labels associated with each class.

References

R.P.W. Duin, P. Juszczak, D.de Ridder, P. Paclik, E. Pekalska, D.M.Tax, Prtools, a matlab toolbox for pattern
recognition, 2004. URL 〈http://www.prtools.org〉.

deslib.util.datasets.make_circle_square(size_classes, random_state=None)
Generate the circle square dataset.

Parameters

size_classes [list with the number of samples for each class.]

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

Returns

X [array of shape = [size_classes, 2]] The generated data points.

y [array of shape = [size_classes]] Class labels associated with each class.

References

P. Henniges, E. Granger, R. Sabourin, Factors of overtraining with fuzzy artmap neural networks, International
Joint Conference on Neural Networks (2005) 1075–1080.

deslib.util.datasets.make_xor(n_samples, random_state=None)
Generate the exclusive-or (XOR) dataset.

Parameters

n_samples [int] Number of generated data points.

3.2. API Reference 97

http://www.prtools.org

deslib Documentation, Release 0.3

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

Returns

X [array of shape = [size_classes, 2]] The generated data points.

y [array of shape = [size_classes]] Class labels associated with each class.

3.3 General examples

Examples showing how to use different aspect of the library

Note: Click here to download the full example code

3.3.1 Simple example

In this example we show how to apply different DCS and DES techniques for a classification dataset.

import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from deslib.des import METADES
from deslib.des import KNORAE

Setting up the random state to have consistent results
rng = np.random.RandomState(42)

Generate a classification dataset
X, y = make_classification(n_samples=1000, random_state=rng)
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,

random_state=rng)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,

test_size=0.5,
random_state=rng)

Initialize the DS techniques. DS methods can be initialized without
specifying a single input parameter. In this example, we just pass the random
state in order to always have the same result.
kne = KNORAE(random_state=rng)
meta = METADES(random_state=rng)

Fitting the des techniques
kne.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Calculate classification accuracy of each technique
print('Evaluating DS techniques:')

(continues on next page)

98 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

print('Classification accuracy KNORA-Eliminate: ',
kne.score(X_test, y_test))

print('Classification accuracy META-DES: ', meta.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

Note: Click here to download the full example code

3.3.2 Measuring the influence of the region of competence

This example shows how the size of the region of competence (parameter k) can influence the final performance of DS
techniques.

In this example we vary the value of the parameter k from 3 to 15 and measure the performance of 7 different dynamic
selection technique using the same pool of classifiers.

Let’s start by importing all required modules. In this example we use the new sklearn-OpenML interface to fetch the
diabetes classification problem.

import numpy as np
import matplotlib.pyplot as plt
DCS techniques
from deslib.dcs import MCB
from deslib.dcs import OLA
from deslib.dcs import Rank
from deslib.dcs import LCA

DES techniques
from deslib.des import DESP
from deslib.des import KNORAU
from deslib.des import KNORAE

from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import Perceptron
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_openml

rng = np.random.RandomState(123456)

data = fetch_openml(name='diabetes', cache=False)
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)

Normalizing the dataset to have 0 mean and unit variance.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

pool_classifiers = BaggingClassifier(Perceptron(max_iter=100),
random_state=rng)

pool_classifiers.fit(X_train, y_train)

(continues on next page)

3.3. General examples 99

deslib Documentation, Release 0.3

(continued from previous page)

Setting with_IH
mcb = MCB(pool_classifiers, random_state=rng)
ola = OLA(pool_classifiers)
des_p = DESP(pool_classifiers)
knu = KNORAU(pool_classifiers)
lca = LCA(pool_classifiers)
kne = KNORAE(pool_classifiers)
rank = Rank(pool_classifiers)
list_ds_methods = [mcb, ola, des_p, knu, lca, kne, rank]
names = ['MCB', 'OLA', 'DES-P', 'KNORA-U', 'LCA', 'KNORA-E', 'Rank']

k_value_list = range(3, 16)

Plot accuracy x region of competence size.

We can see the this parameter can have a huge influence in the performance of certain DS techniques. The main excep-
tion being the KNORA-E and Rank which have built-in mechanism to automatically adjust the region of competence
size during the competence level estimation.

fig, ax = plt.subplots()
for ds_method, name in zip(list_ds_methods, names):

accuracy = []
for k in k_value_list:

ds_method.k = k
ds_method.fit(X_train, y_train)
accuracy.append(ds_method.score(X_test, y_test))

ax.plot(k_value_list, accuracy, label=name)

plt.xticks(k_value_list)
ax.set_ylim(0.60, 0.80)
ax.set_xlabel('Region of competence size (K value)', fontsize=13)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.legend(loc='lower right')
plt.show()

100 Chapter 3. API Reference

deslib Documentation, Release 0.3

Total running time of the script: (0 minutes 12.624 seconds)

Note: Click here to download the full example code

3.3.3 Dynamic selection vs K-NN: Using instance hardness

One aspect about dynamic selection techniques is that it can better deal with the classification of test examples associ-
ated with high degree of instance hardness. Such examples are often found close to the border of the classes, with the
majority of its neighbors belonging to different classes. On the other hand, the KNN method, which is often used to
estimate the region of competence in DS methods works better in the classification of examples associated with low
instance hardness [1].

DESlib already implements a switch mechanism between DS techniques and the KNN classifier according to the
hardness level of an instance. This example varies the threshold in which KNN is used for classification instead of DS
methods. It also compares the classification results with the standard KNN as a baseline.

The switch mechanism also reduces the computational cost involved since only part of the test samples are classified
by the DS method.

References

[1] Cruz, Rafael MO, et al. “Dynamic Ensemble Selection VS K-NN: why and when Dynamic Selection obtains

3.3. General examples 101

deslib Documentation, Release 0.3

higher classification performance?.” arXiv preprint arXiv:1804.07882 (2018).

Let’s start by importing all required modules. In this example we use the new sklearn-OpenML interface to fetch the
diabetes classification problem.

import numpy as np
import matplotlib.pyplot as plt
from deslib.dcs import MCB
from deslib.dcs import OLA
from deslib.dcs import Rank
from deslib.des import DESP
from deslib.des import KNORAE
from deslib.des import KNORAU
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_openml

rng = np.random.RandomState(123456)

data = fetch_openml(name='diabetes', cache=False)
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)

Normalizing the dataset to have 0 mean and unit variance.
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Training a pool of classifiers using the bagging technique.
pool_classifiers = BaggingClassifier(DecisionTreeClassifier(random_state=rng),

random_state=rng)
pool_classifiers.fit(X_train, y_train)

Setting DS method to use the switch mechanism

In order to activate the functionality to switch between DS and KNN according to the instance hardness level we need
to set the DS techniques to use this information. This is done by setting the hyperparameter with_IH to True. In this
example we consider four different values for te threshold

mcb = MCB(pool_classifiers, with_IH=True, random_state=rng)
ola = OLA(pool_classifiers, with_IH=True, random_state=rng)
rank = Rank(pool_classifiers, with_IH=True, random_state=rng)
des_p = DESP(pool_classifiers, with_IH=True, random_state=rng)
kne = KNORAE(pool_classifiers, with_IH=True, random_state=rng)
knu = KNORAU(pool_classifiers, with_IH=True, random_state=rng)
list_ih_values = [0.0, 1./7., 2./7., 3./7.]

list_ds_methods = [method.fit(X_train, y_train) for method in
[mcb, ola, rank, des_p, kne, knu]]

names = ['MCB', 'OLA', 'Mod. Rank', 'DES-P', 'KNORA-E', 'KNORA-U']

Plot accuracy x IH
fig, ax = plt.subplots()
for ds_method, name in zip(list_ds_methods, names):

(continues on next page)

102 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

accuracy = []
for idx_ih, ih_rate in enumerate([0.0, 0.14, 0.28, 0.42]):

ds_method.IH_rate = ih_rate
accuracy.append(ds_method.score(X_test, y_test))

ax.plot(list_ih_values, accuracy, label=name)

plt.xticks(list_ih_values)
ax.set_ylim(0.65, 0.80)
ax.set_xlabel('IH value', fontsize=13)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.legend()

plt.show()

Total running time of the script: (0 minutes 4.641 seconds)

Note: Click here to download the full example code

3.3.4 Calibrating base classifiers to estimate probabilities

In this example we show how to apply different DCS and DES techniques for a classification dataset.

3.3. General examples 103

deslib Documentation, Release 0.3

A very important aspect in dynamic selection is the generation of a pool of classifiers. A common practice in the
dynamic selection literature is to use the Bagging (Bootstrap Aggregating) method to generate a pool containing base
classifiers that are both diverse and informative.

In this example we generate a pool of classifiers using the Bagging technique implemented on the Scikit-learn library.
Then, we compare the results obtained by combining this pool of classifiers using the standard Bagging combination
approach versus the application of dynamic selection technique to select the set of most competent classifiers

Let’s start by importing all required modules, and defining helper functions to facilitate plotting the decision bound-
aries:

import numpy as np
from sklearn.calibration import CalibratedClassifierCV
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from deslib.dcs.a_priori import APriori
from deslib.dcs.mcb import MCB
from deslib.dcs.ola import OLA
from deslib.des.des_p import DESP
from deslib.des.knora_e import KNORAE
from deslib.des.knora_u import KNORAU
from deslib.des.meta_des import METADES

Preparing the dataset

In this part we load the breast cancer dataset from scikit-learn and preprocess it in order to pass to the DS models. An
important point here is to normalize the data so that it has zero mean and unit variance, which is a common requirement
for many machine learning algorithms. This step can be easily done using the StandardScaler class.

rng = np.random.RandomState(123)
data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,

random_state=rng)

Scale the variables to have 0 mean and unit variance
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,

test_size=0.5,
random_state=rng)

Train a pool of 100 base classifiers
pool_classifiers = BaggingClassifier(Perceptron(max_iter=10),

n_estimators=100, random_state=rng)
pool_classifiers.fit(X_train, y_train)

Initialize the DS techniques
(continues on next page)

104 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers, random_state=rng)

Calibrating base classifiers

Some dynamic selection techniques requires that the base classifiers estimate probabilities in order to estimate its
competence level. Since the Perceptron model is not a probabilistic classifier (does not implements the predict_proba
method, it needs to be calibrated for probability estimation before being used by such DS techniques. This step can be
conducted using the CalibrateClassifierCV class from scikit-learn. Note that in this example we pass a prefited pool
of classifiers to the calibration method in order to use exactly the same pool used in the other DS methods.

calibrated_pool = []
for clf in pool_classifiers:

calibrated = CalibratedClassifierCV(base_estimator=clf, cv='prefit')
calibrated.fit(X_dsel, y_dsel)
calibrated_pool.append(calibrated)

apriori = APriori(calibrated_pool, random_state=rng)
meta = METADES(calibrated_pool)

knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
apriori.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Evaluating the methods

Let’s now evaluate the methods on the test set. We also use the performance of Bagging (pool of classifiers without
any selection) as a baseline comparison. We can see that the majority of DS methods achieve higher classification
accuracy.

print('Evaluating DS techniques:')
print('Classification accuracy KNORA-Union: ',

knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ',

kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy MCB: ', mcb.score(X_test, y_test))
print('Classification accuracy META-DES: ', meta.score(X_test, y_test))
print('Classification accuracy Bagging: ',

pool_classifiers.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

3.3. General examples 105

deslib Documentation, Release 0.3

Note: Click here to download the full example code

3.3.5 Using the Dynamic Frienemy Pruning (DFP)

In this example we show how to apply the dynamic frienemy pruning (DFP) to different dynamic selection techniques.

The DFP method is an online pruning model which analyzes the region of competence to know if it is composed of
samples from different classes (indecision region). Then, it remove the base classifiers that do not correctly classifies
at least a pair of samples coming from different classes, i.e., the base classifiers that cannot separate the classes in the
local region. More information on this method can be found in refs [1] and [2].

DES techniques using the DFP algorithm are called FIRE-DES (Frienemy Indecision REgion Dynamic Ensemble
Selection). The FIRE-DES is shown to significantly improve the performance of several dynamic selection algorithms
when dealing with imbalanced classification problems as it avoids the classifiers that are biased towards the majority
class in predicting the label for the query.

References

[1] Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., “Online Pruning of Base Classifiers for Dynamic Ensemble
Selection”, Pattern Recognition, vol. 72, 2017, pp 44-58.

[2] Cruz, R.M.O., Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., “FIRE-DES++: Enhanced online pruning of
base classifiers for dynamic ensemble selection”., Pattern Recognition, vol. 85, 2019, pp 149-160.

import numpy as np
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
from deslib.dcs import APosteriori
from deslib.dcs import APriori
from deslib.dcs import LCA
from deslib.dcs import OLA
from deslib.des import DESP
from deslib.des import METADES

rng = np.random.RandomState(654321)

Generate an imbalanced classification dataset
X, y = make_classification(n_classes=2, n_samples=2000, weights=[0.05, 0.95],

random_state=rng)
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,

random_state=rng)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,

test_size=0.5,
random_state=rng)

Considering a pool composed of 10 base classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10, random_state=rng,

max_depth=10)
pool_classifiers.fit(X_train, y_train)

(continues on next page)

106 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

ds_names = ['A Priori', 'A Posteriori', 'OLA', 'LCA', 'DES-P', 'META-DES']

DS techniques without DFP
apriori = APriori(pool_classifiers, random_state=rng)
aposteriori = APosteriori(pool_classifiers, random_state=rng)
ola = OLA(pool_classifiers)
lca = LCA(pool_classifiers)
desp = DESP(pool_classifiers)
meta = METADES(pool_classifiers)

FIRE-DS techniques (with DFP)
fire_apriori = APriori(pool_classifiers, DFP=True, random_state=rng)
fire_aposteriori = APosteriori(pool_classifiers, DFP=True, random_state=rng)
fire_ola = OLA(pool_classifiers, DFP=True)
fire_lca = LCA(pool_classifiers, DFP=True)
fire_desp = DESP(pool_classifiers, DFP=True)
fire_meta = METADES(pool_classifiers, DFP=True)

list_ds = [apriori, aposteriori, ola, lca, desp, meta]
list_fire_ds = [fire_apriori, fire_aposteriori, fire_ola,

fire_lca, fire_desp, fire_meta]

scores_ds = []
for ds in list_ds:

ds.fit(X_dsel, y_dsel)
scores_ds.append(roc_auc_score(y_test, ds.predict(X_test)))

scores_fire_ds = []
for fire_ds in list_fire_ds:

fire_ds.fit(X_dsel, y_dsel)
scores_fire_ds.append(roc_auc_score(y_test, fire_ds.predict(X_test)))

Comparing DS techniques with FIRE-DES techniques

Let’s now evaluate the DES methods on the test set. Since we are dealing with imbalanced data, we use the area under
the roc curve (AUC) as performance metric instead of classification accuracy. The AUC can be easily calculated using
the sklearn.metrics.roc_auc_score function from scikit-learn.

width = 0.35
ind = np.arange(len(ds_names))
plt.bar(ind, scores_ds, width, label='DES', edgecolor='k')
plt.bar(ind + width, scores_fire_ds, width, label='FIRE-DES', edgecolor='k')

plt.ylabel('Area under the roc curve (AUC)')
plt.title('AUC Performance: DS vs FIRE-DES')
plt.ylim((0.60, 0.81))
plt.xticks(ind + width / 2, ds_names)
plt.legend(loc='best')
plt.show()

3.3. General examples 107

deslib Documentation, Release 0.3

Total running time of the script: (0 minutes 4.014 seconds)

Note: Click here to download the full example code

3.3.6 Comparing dynamic selection with baseline static methods

In this example we compare the performance of DS techinques with the static ensemble methods. DESlib offer the
implementation of static ensemble methods in the deslib.static module. The following techniques are considered:

Static methods used as baseline comparison are in the deslib.static module. They are:

Majority Voting: The outputs of all base classifiers in the pool are combined using the majority voting rule

Static Selection: A fraction of the best performing classifiers (based on the validation data, is selected to compose the
ensemble).

Single Best: The base classifier with the highest classification accuracy in the validation set is selected for classification

Stacked classifier: The outputs of all base classifiers are passed down to a meta-estimator which combines the . The
meta-estimator is trained based on the outputs of the base classifiers on the training data.

These techniques are used in the dynamic selection literature as a baseline comparison (for more information see
references [1] and [2])

108 Chapter 3. API Reference

deslib Documentation, Release 0.3

At the end we also present the result of the Oracle, which is an abastract model which always selects the base classifier
that predicted the correct label if such classifier exists. From the dynamic selection point of view, the Oracle is seen
as the upper limit performance that can be achieved with the given pool of classifiers.

References

[1] Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

[2] R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

[3] Kuncheva, Ludmila I. “A theoretical study on six classifier fusion strategies.” IEEE Transactions on Pattern
Analysis & Machine Intelligence, (2002): 281-286.

import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
from matplotlib.cm import get_cmap
import numpy as np

Example of a dcs techniques
from deslib.dcs import OLA
from deslib.dcs import MCB
from deslib.des import DESP
from deslib.des import KNORAU
from deslib.des.knora_e import KNORAE
from deslib.des import KNOP
from deslib.des import METADES

from sklearn.datasets import make_classification
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
Example of a des techniques

Example of stacked model
from deslib.static import (StackedClassifier,

SingleBest,
StaticSelection,
Oracle)

rng = np.random.RandomState(123)

Generate a classification dataset
X, y = make_classification(n_samples=2000,

n_classes=3,
n_informative=6,
random_state=rng)

split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,

random_state=rng)

X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
test_size=0.50,
random_state=rng)

(continues on next page)

3.3. General examples 109

deslib Documentation, Release 0.3

(continued from previous page)

pool_classifiers = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
n_estimators=100,
random_state=rng)

pool_classifiers.fit(X_train, y_train)

Setting up static methods.
stacked = StackedClassifier(pool_classifiers)
static_selection = StaticSelection(pool_classifiers)
single_best = SingleBest(pool_classifiers)

Initialize a DS technique. Here we specify the size of
the region of competence (5 neighbors)
knorau = KNORAU(pool_classifiers, random_state=rng)
kne = KNORAE(pool_classifiers, random_state=rng)
desp = DESP(pool_classifiers, random_state=rng)
ola = OLA(pool_classifiers, random_state=rng)
mcb = MCB(pool_classifiers, random_state=rng)
knop = KNOP(pool_classifiers, random_state=rng)
meta = METADES(pool_classifiers, random_state=rng)

names = ['Single Best', 'Static Selection', 'Stacked',
'KNORA-U', 'KNORA-E', 'DES-P', 'OLA', 'MCB', 'KNOP', 'META-DES']

methods = [single_best, static_selection, stacked,
knorau, kne, desp, ola, mcb, knop, meta]

Fit the DS techniques
scores = []
for method, name in zip(methods, names):

method.fit(X_dsel, y_dsel)
scores.append(method.score(X_test, y_test))
print("Classification accuracy {} = {}"

.format(name, method.score(X_test, y_test)))

Out:

Classification accuracy Single Best = 0.766
Classification accuracy Static Selection = 0.826
Classification accuracy Stacked = 0.808
Classification accuracy KNORA-U = 0.838
Classification accuracy KNORA-E = 0.83
Classification accuracy DES-P = 0.836
Classification accuracy OLA = 0.812
Classification accuracy MCB = 0.826
Classification accuracy KNOP = 0.842
Classification accuracy META-DES = 0.856

Plotting the results

Let’s now evaluate the methods on the test set.

cmap = get_cmap('Dark2')
colors = [cmap(i) for i in np.linspace(0, 1, 10)]
fig, ax = plt.subplots(figsize=(8, 6.5))

(continues on next page)

110 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

pct_formatter = FuncFormatter(lambda x, pos: '{:.1f}'.format(x * 100))
ax.bar(np.arange(len(methods)),

scores,
color=colors,
tick_label=names,
edgecolor='k')

ax.set_ylim(0.70, 0.86)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.yaxis.set_major_formatter(pct_formatter)
for tick in ax.get_xticklabels():

tick.set_rotation(60)
plt.subplots_adjust(bottom=0.18)

plt.show()

The Oracle results

OracleAbstract method that always selects the base classifier that predicts the correct label if such classifier exists. This
method is often used to measure the upper-limit performance that can be achieved by a dynamic classifier selection

3.3. General examples 111

deslib Documentation, Release 0.3

technique. It is used as a benchmark by several dynamic selection algorithms. We can see the Oracle performance is
close to 100%, which is an almost 15% gap to the best performing method.

oracle = Oracle(pool_classifiers).fit(X_train, y_train)
print('Oracle result: {}' .format(oracle.score(X_test, y_test)))

Out:

Oracle result: 0.998

Total running time of the script: (0 minutes 6.663 seconds)

Note: Click here to download the full example code

3.3.7 Comparing dynamic selection with Random Forest

In this example we use a pool of classifiers generated using the Random Forest method rather than Bagging. We also
show how to change the size of the region of competence, used to estimate the local competence of the base classifiers.

This demonstrates that the library accepts any kind of base classifiers as long as they implement the predict and predict
proba functions. Moreover, any ensemble generation method such as Boosting or Rotation Trees can be used to
generate a pool containing diverse base classifiers. We also included the performance of the RandomForest classifier
as a baseline comparison.

import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
from matplotlib.cm import get_cmap
import numpy as np

Example of a dcs techniques
from deslib.dcs.ola import OLA
from deslib.dcs.mcb import MCB
from deslib.des.des_p import DESP
from deslib.des.knora_u import KNORAU
from deslib.des.meta_des import METADES
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

Example of a des techniques
from deslib.des.knora_e import KNORAE

Example of stacked model
from deslib.static.stacked import StackedClassifier
from sklearn.linear_model import LogisticRegression

rng = np.random.RandomState(42)

Generate a classification dataset
data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,

(continues on next page)

112 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

random_state=rng)
RF = RandomForestClassifier(random_state=rng)
RF.fit(X_train, y_train)

X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
test_size=0.50,
random_state=rng)

Training a random forest to be used as the pool of classifiers.
We set the maximum depth of the tree so that it
can estimate probabilities
pool_classifiers = RandomForestClassifier(n_estimators=10, max_depth=5,

random_state=rng)
pool_classifiers.fit(X_train, y_train)

stacked = StackedClassifier(pool_classifiers, LogisticRegression())
stacked.fit(X_dsel, y_dsel)

Initialize a DS technique. Here we specify the size of
the region of competence (5 neighbors)
knorau = KNORAU(pool_classifiers, random_state=rng)
kne = KNORAE(pool_classifiers, k=5, random_state=rng)
desp = DESP(pool_classifiers, k=5, random_state=rng)
ola = OLA(pool_classifiers, k=5, random_state=rng)
mcb = MCB(pool_classifiers, k=5, random_state=rng)
meta = METADES(pool_classifiers, k=5, random_state=rng)

Fit the DS techniques
knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)

Plotting the results

Let’s now evaluate the methods on the test set.

rf_score = RF.score(X_test, y_test)
stacked_score = stacked.score(X_test, y_test)
knorau_score = knorau.score(X_test, y_test)
kne_score = kne.score(X_test, y_test)
desp_score = desp.score(X_test, y_test)
ola_score = ola.score(X_test, y_test)
mcb_score = mcb.score(X_test, y_test)
meta_score = meta.score(X_test, y_test)
print('Classification accuracy RF: ', rf_score)
print('Classification accuracy Stacked: ', stacked_score)
print('Evaluating DS techniques:')
print('Classification accuracy KNORA-U: ', knorau_score)
print('Classification accuracy KNORA-E: ', kne_score)
print('Classification accuracy DESP: ', desp_score)
print('Classification accuracy OLA: ', ola_score)
print('Classification accuracy MCB: ', mcb_score)

(continues on next page)

3.3. General examples 113

deslib Documentation, Release 0.3

(continued from previous page)

print('Classification accuracy META-DES: ', meta_score)

cmap = get_cmap('Dark2')
colors = [cmap(i) for i in np.linspace(0, 1, 7)]
labels = ['RF', 'Stacked', 'KNORA-U', 'KNORA-E', 'DESP', 'OLA', 'MCB',

'META-DES']

fig, ax = plt.subplots()
pct_formatter = FuncFormatter(lambda x, pos: '{:.1f}'.format(x * 100))
ax.bar(np.arange(8),

[rf_score, stacked_score, knorau_score, kne_score, desp_score,
ola_score, mcb_score, meta_score],

color=colors,
tick_label=labels)

ax.set_ylim(0.93, 0.98)
ax.set_xlabel('Method', fontsize=13)
ax.set_ylabel('Accuracy on the test set (%)', fontsize=13)
ax.yaxis.set_major_formatter(pct_formatter)
for tick in ax.get_xticklabels():

tick.set_rotation(45)
plt.subplots_adjust(bottom=0.15)
plt.show()

Out:

114 Chapter 3. API Reference

deslib Documentation, Release 0.3

Classification accuracy RF: 0.9440559440559441
Classification accuracy Stacked: 0.972027972027972
Evaluating DS techniques:
Classification accuracy KNORA-U: 0.958041958041958
Classification accuracy KNORA-E: 0.958041958041958
Classification accuracy DESP: 0.951048951048951
Classification accuracy OLA: 0.9440559440559441
Classification accuracy MCB: 0.958041958041958
Classification accuracy META-DES: 0.951048951048951

Total running time of the script: (0 minutes 1.062 seconds)

Note: Click here to download the full example code

3.3.8 Example using heterogeneous ensemble

DESlib accepts different classifier models in the pool of classifiers. Such pool of classifiers is called Heterogeneous.

In this example, we consider a pool of classifiers composed of a Gaussian Naive Bayes, Perceptron, k-NN, Decision
tree and Gaussian SVM. We also compare the result of DS methods with the voting classifier from sklean.

import numpy as np

Importing dataset and preprocessing routines
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
Base classifier models:
from sklearn.linear_model import Perceptron
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble.voting_classifier import VotingClassifier

Example of DCS techniques
from deslib.dcs import OLA
from deslib.dcs import MCB
Example of DES techniques
from deslib.des import KNORAE
from deslib.des import DESP
from deslib.des import KNORAU
from deslib.des import METADES
from deslib.static import StackedClassifier

rng = np.random.RandomState(42)
data = load_breast_cancer()
X = data.data
y = data.target

split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,

random_state=rng)

(continues on next page)

3.3. General examples 115

deslib Documentation, Release 0.3

(continued from previous page)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,

test_size=0.5,
random_state=rng)

model_perceptron = CalibratedClassifierCV(Perceptron(max_iter=100,
random_state=rng),

cv=3)

model_perceptron.fit(X_train, y_train)
model_svc = SVC(probability=True, gamma='auto').fit(X_train, y_train)
model_bayes = GaussianNB().fit(X_train, y_train)
model_tree = DecisionTreeClassifier(random_state=rng).fit(X_train, y_train)
model_knn = KNeighborsClassifier(n_neighbors=1).fit(X_train, y_train)

pool_classifiers = [model_perceptron,
model_svc,
model_bayes,
model_tree,
model_knn]

voting_classifiers = [("perceptron", model_perceptron),
("svc", model_svc),
("bayes", model_bayes),
("tree", model_tree),
("knn", model_knn)]

model_voting = VotingClassifier(estimators=voting_classifiers).fit(
X_train, y_train)

Initializing the techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
metades = METADES(pool_classifiers)
DCS techniques
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers)

Adding stacked classifier as baseline comparison. Stacked classifier can be found in the static module. In this exper-
iment we consider two types of stacking: one using logistic regression as meta-classifier (default configuration) and
the other using a Decision Tree.

stacked_lr = StackedClassifier(pool_classifiers, random_state=rng)
stacked_dt = StackedClassifier(pool_classifiers,

random_state=rng,
meta_classifier=DecisionTreeClassifier())

Fitting the DS techniques
knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)

(continues on next page)

116 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

metades.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)

Fitting the tacking models
stacked_lr.fit(X_dsel, y_dsel)
stacked_dt.fit(X_dsel, y_dsel)

Calculate classification accuracy of each technique
print('Evaluating DS techniques:')
print('Classification accuracy of Majority voting the pool: ',

model_voting.score(X_test, y_test))
print('Classification accuracy of KNORA-U: ', knorau.score(X_test, y_test))
print('Classification accuracy of KNORA-E: ', kne.score(X_test, y_test))
print('Classification accuracy of DESP: ', desp.score(X_test, y_test))
print('Classification accuracy of META-DES: ', metades.score(X_test, y_test))
print('Classification accuracy of OLA: ', ola.score(X_test, y_test))
print('Classification accuracy Stacking LR', stacked_lr.score(X_test, y_test))
print('Classification accuracy Stacking DT', stacked_dt.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

Note: Click here to download the full example code

3.3.9 Dynamic selection with linear classifiers: XOR example

This example shows that DS can deal with non-linear problem (XOR) using a combination of a few linear base
classifiers.

• 10 dynamic selection methods (5 DES and 5 DCS) are evaluated with a pool composed of Decision stumps.

• Since we use Bagging to generate the base classifiers, we also included its performance as a baseline comparison.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from deslib.dcs import LCA
from deslib.dcs import MLA
from deslib.dcs import OLA
from deslib.dcs import MCB
from deslib.dcs import Rank

from deslib.des import DESKNN
from deslib.des import KNORAE
from deslib.des import KNORAU
from deslib.des import KNOP
from deslib.des import METADES
from deslib.util.datasets import make_xor

Defining helper functions to facilitate plotting the decision boundaries:

3.3. General examples 117

deslib Documentation, Release 0.3

def plot_classifier_decision(ax, clf, X, mode='line', **params):

xx, yy = make_grid(X[:, 0], X[:, 1])

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
if mode == 'line':

ax.contour(xx, yy, Z, **params)
else:

ax.contourf(xx, yy, Z, **params)
ax.set_xlim((np.min(X[:, 0]), np.max(X[:, 0])))
ax.set_ylim((np.min(X[:, 1]), np.max(X[:, 0])))

def plot_dataset(X, y, ax=None, title=None, **params):

if ax is None:
ax = plt.gca()

ax.scatter(X[:, 0], X[:, 1], marker='o', c=y, s=25,
edgecolor='k', **params)

ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
if title is not None:

ax.set_title(title)
return ax

def make_grid(x, y, h=.02):

x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
return xx, yy

Prepare the DS techniques. Changing k value to 5.
def initialize_ds(pool_classifiers, X, y, k=5):

knorau = KNORAU(pool_classifiers, k=k)
kne = KNORAE(pool_classifiers, k=k)
desknn = DESKNN(pool_classifiers, k=k)
ola = OLA(pool_classifiers, k=k)
lca = LCA(pool_classifiers, k=k)
mla = MLA(pool_classifiers, k=k)
mcb = MCB(pool_classifiers, k=k)
rank = Rank(pool_classifiers, k=k)
knop = KNOP(pool_classifiers, k=k)
meta = METADES(pool_classifiers, k=k)

list_ds = [knorau, kne, ola, lca, mla, desknn, mcb, rank, knop, meta]
names = ['KNORA-U', 'KNORA-E', 'OLA', 'LCA', 'MLA', 'DESKNN', 'MCB',

'RANK', 'KNOP', 'META-DES']
fit the ds techniques
for ds in list_ds:

ds.fit(X, y)

return list_ds, names

118 Chapter 3. API Reference

deslib Documentation, Release 0.3

Generating the dataset and training the pool of classifiers.

rng = np.random.RandomState(1234)
X, y = make_xor(1000, random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=rng)
X_DSEL, X_test, y_DSEL, y_test = train_test_split(X_train, y_train,

test_size=0.5,
random_state=rng)

pool_classifiers = BaggingClassifier(DecisionTreeClassifier(max_depth=1),
n_estimators=10,
random_state=rng)

pool_classifiers.fit(X_train, y_train)

Merging training and validation data to compose DSEL

In this example merge the training data with the validation, to create a DSEL having more examples for the competence
estimation. Using the training data for dynamic selection can be beneficial when dealing with small sample size
datasets. However, in this case we need to have a pool composed of weak classifier so that the base classifiers are not
able to memorize the training data (overfit).

X_DSEL = np.vstack((X_DSEL, X_train))
y_DSEL = np.hstack((y_DSEL, y_train))
list_ds, names = initialize_ds(pool_classifiers, X_DSEL, y_DSEL, k=7)

fig, sub = plt.subplots(4, 3, figsize=(13, 10))
plt.subplots_adjust(wspace=0.4, hspace=0.4)

ax_data = sub.flatten()[0]
ax_bagging = sub.flatten()[1]
plot_dataset(X_train, y_train, ax=ax_data, title="Training data")

plot_dataset(X_train, y_train, ax=ax_bagging)
plot_classifier_decision(ax_bagging, pool_classifiers,

X_train, mode='filled', alpha=0.4)
ax_bagging.set_title("Bagging")

Plotting the decision border of the DS methods
for ds, name, ax in zip(list_ds, names, sub.flatten()[2:]):

plot_dataset(X_train, y_train, ax=ax)
plot_classifier_decision(ax, ds, X_train, mode='filled', alpha=0.4)
ax.set_xlim((np.min(X_train[:, 0]) - 0.1, np.max(X_train[:, 0] + 0.1)))
ax.set_ylim((np.min(X_train[:, 1]) - 0.1, np.max(X_train[:, 1] + 0.1)))
ax.set_title(name)

plt.show()
plt.tight_layout()

3.3. General examples 119

deslib Documentation, Release 0.3

Evaluation on the test set

Finally, let’s evaluate the classification accuracy of DS techniques and Bagging on the test set:

for ds, name in zip(list_ds, names):
print('Accuracy ' + name + ': ' + str(ds.score(X_test, y_test)))

print('Accuracy Bagging: ' + str(pool_classifiers.score(X_test, y_test)))

Out:

Accuracy KNORA-U: 0.924
Accuracy KNORA-E: 1.0
Accuracy OLA: 0.976
Accuracy LCA: 0.916
Accuracy MLA: 0.916
Accuracy DESKNN: 0.98
Accuracy MCB: 0.976
Accuracy RANK: 1.0
Accuracy KNOP: 0.668
Accuracy META-DES: 0.936
Accuracy Bagging: 0.56

Total running time of the script: (0 minutes 29.865 seconds)

120 Chapter 3. API Reference

deslib Documentation, Release 0.3

Note: Click here to download the full example code

3.3.10 Visualizing decision boundaries on the P2 problem

This example shows the power of dynamic selection (DS) techniques which can solve complex non-linear classification
near classifiers. It also compares the performance of DS techniques with some baseline classification methods such as
Random Forests, AdaBoost and SVMs.

The P2 is a two-class problem, presented by Valentini, in which each class is defined in multiple decision regions
delimited by polynomial and trigonometric functions:

𝑡𝑜

𝐸1(𝑥) = 𝑠𝑖𝑛(𝑥) + 5

𝐸2(𝑥) = (𝑥− 2)2 + 1

𝐸3(𝑥) = −0.1 · 𝑥2 + 0.6𝑠𝑖𝑛(4𝑥) + 8

𝐸4(𝑥) =
(𝑥− 10)2

2
+ 7.902(3.2)

It is impossible to solve this problem using a single linear classifier. The performance of the best possible linear
classifier is around 50%.

Let’s start by importing all required modules, and defining helper functions to facilitate plotting the decision bound-
aries:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier

Importing DS techniques
from deslib.dcs.ola import OLA
from deslib.dcs.rank import Rank
from deslib.des.des_p import DESP
from deslib.des.knora_e import KNORAE
from deslib.static import StackedClassifier
from deslib.util.datasets import make_P2

Plotting-related functions

(continues on next page)

3.3. General examples 121

deslib Documentation, Release 0.3

(continued from previous page)

def make_grid(x, y, h=.02):
x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
return xx, yy

def plot_classifier_decision(ax, clf, X, mode='line', **params):
xx, yy = make_grid(X[:, 0], X[:, 1])

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
if mode == 'line':

ax.contour(xx, yy, Z, **params)
else:

ax.contourf(xx, yy, Z, **params)
ax.set_xlim((np.min(X[:, 0]), np.max(X[:, 0])))
ax.set_ylim((np.min(X[:, 1]), np.max(X[:, 0])))

def plot_dataset(X, y, ax=None, title=None, **params):
if ax is None:

ax = plt.gca()
ax.scatter(X[:, 0], X[:, 1], marker='o', c=y, s=25,

edgecolor='k', **params)
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
if title is not None:

ax.set_title(title)
return ax

Visualizing the dataset

Now let’s generate and plot the dataset:

Generating and plotting the P2 Dataset:
rng = np.random.RandomState(1234)
X, y = make_P2([1000, 1000], random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=rng)
fig, axs = plt.subplots(1, 2, figsize=(15, 5))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plot_dataset(X_train, y_train, ax=axs[0], title='P2 Training set')
plot_dataset(X_test, y_test, ax=axs[1], title='P2 Test set')

122 Chapter 3. API Reference

deslib Documentation, Release 0.3

Evaluating the performance of dynamic selection methods

We will now generate a pool composed of 5 Decision Stumps using AdaBoost.

These are weak linear models. Each base classifier has a classification performance close to 50%.

pool_classifiers = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
n_estimators=5, random_state=rng)

pool_classifiers.fit(X_train, y_train)

ax = plot_dataset(X_train, y_train, title='Five Decision Stumps generated')
for clf in pool_classifiers:

plot_classifier_decision(ax, clf, X_train)
ax.set_xlim((0, 1))
ax.set_ylim((0, 1))

plt.show()
plt.tight_layout()

3.3. General examples 123

deslib Documentation, Release 0.3

Comparison with Dynamic Selection techniques

We will now consider four DS methods: k-Nearest Oracle-Eliminate (KNORA-E), Dynamic Ensemble Selection
performance (DES-P), Overall Local Accuracy (OLA) and Rank. Let’s train the classifiers and plot their decision
boundaries:

knora_e = KNORAE(pool_classifiers).fit(X_train, y_train)
desp = DESP(pool_classifiers).fit(X_train, y_train)
ola = OLA(pool_classifiers).fit(X_train, y_train)
rank = Rank(pool_classifiers).fit(X_train, y_train)

Plotting the Decision Border of the DS methods.
fig2, sub = plt.subplots(2, 2, figsize=(15, 10))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
titles = ['KNORA-Eliminate', 'DES-P', 'Overall Local Accuracy (OLA)',

'Modified Rank']

classifiers = [knora_e, desp, ola, rank]
for clf, ax, title in zip(classifiers, sub.flatten(), titles):

plot_classifier_decision(ax, clf, X_train, mode='filled', alpha=0.4)
plot_dataset(X_test, y_test, ax=ax)
ax.set_xlim(np.min(X[:, 0]), np.max(X[:, 0]))
ax.set_ylim(np.min(X[:, 1]), np.max(X[:, 1]))
ax.set_title(title, fontsize=15)

(continues on next page)

124 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

Setting figure to show
sphinx_gallery_thumbnail_number = 3

plt.show()
plt.tight_layout()

Comparison to baselines

Let’s now compare the results with four baselines: Support Vector Machine (SVM) with an RBF kernel; Multi-Layer
Perceptron (MLP), Random Forest, Adaboost, and Stacking.

Setting a baseline using standard classification methods
svm = SVC(gamma='scale', random_state=rng).fit(X_train, y_train)
mlp = MLPClassifier(max_iter=10000, random_state=rng).fit(X_train, y_train)
forest = RandomForestClassifier(n_estimators=10,

random_state=rng).fit(X_train, y_train)
boosting = AdaBoostClassifier(random_state=rng).fit(X_train, y_train)
stacked_lr = StackedClassifier(pool_classifiers=pool_classifiers,

random_state=rng)
stacked_lr.fit(X_train, y_train)

stacked_dt = StackedClassifier(pool_classifiers=pool_classifiers,
random_state=rng,
meta_classifier=DecisionTreeClassifier())

stacked_dt.fit(X_train, y_train)

3.3. General examples 125

deslib Documentation, Release 0.3

fig2, sub = plt.subplots(2, 3, figsize=(15, 7))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
titles = ['SVM decision', 'MLP decision', 'RF decision',

'Boosting decision', 'Stacked LR', 'Stacked Decision Tree']
classifiers = [svm, mlp, forest, boosting, stacked_lr, stacked_dt]
for clf, ax, title in zip(classifiers, sub.flatten(), titles):

plot_classifier_decision(ax, clf, X_test, mode='filled', alpha=0.4)
plot_dataset(X_test, y_test, ax=ax)
ax.set_xlim(np.min(X[:, 0]), np.max(X[:, 0]))
ax.set_ylim(np.min(X[:, 1]), np.max(X[:, 1]))
ax.set_title(title, fontsize=15)

plt.show()
plt.tight_layout()

Evaluation on the test set

Finally, let’s evaluate the baselines and the Dynamic Selection methods on the test set:

print('KNORAE score = {}'.format(knora_e.score(X_test, y_test)))
print('DESP score = {}'.format(desp.score(X_test, y_test)))
print('OLA score = {}'.format(ola.score(X_test, y_test)))
print('Rank score = {}'.format(rank.score(X_test, y_test)))
print('SVM score = {}'.format(svm.score(X_test, y_test)))
print('MLP score = {}'.format(mlp.score(X_test, y_test)))
print('RF score = {}'.format(forest.score(X_test, y_test)))
print('Boosting score = {}'.format(boosting.score(X_test, y_test)))
print('Stacking LR score = {}' .format(stacked_lr.score(X_test, y_test)))
print('Staking Decision Tree = {}' .format(stacked_dt.score(X_test, y_test)))

Out:

KNORAE score = 0.948
DESP score = 0.927
OLA score = 0.932

(continues on next page)

126 Chapter 3. API Reference

deslib Documentation, Release 0.3

(continued from previous page)

Rank score = 0.948
SVM score = 0.725
MLP score = 0.794
RF score = 0.923
Boosting score = 0.795
Stacking LR score = 0.716
Staking Decision Tree = 0.732

Total running time of the script: (0 minutes 18.277 seconds)

3.4 Release history

3.4.1 Version 0.3

• Third release of the stable API. By Rafael M O Cruz and Luiz G Hafemann

Changes

• All techniques are now sklearn estimators and passes the check_estimator tests.

• All techniques can now be instantiated without a trained pool of classifiers.

• Pool of classifiers can now be fitted together with the ensemble techniques. See simple example.

• Added support for Faiss (Facebook AI Similarity Search) for fast region of competence estimation on GPU.

• Added DES Multi-class Imbalance method deslib.des.des_mi.DESMI.

• Added stacked classifier model, deslib.static.stacked.StackedClassifier to the static ensem-
ble module.

• Added a new Instance Hardness measure utils.instance_hardness.kdn_score().

• Added Instance Hardness support when using DES-Clustering.

• Added label encoder for the static module.

• Added a script utils.datasetswith routines to generate synthetic datasets (e.g., the P2 and XOR datasets).

• Changed name of base classes (Adding Base to their following scikit-learn standards).

• Removal of DFP_mask, neighbors and distances as class variables.

• Changed signature of methods estimate_competence, predict_with_ds, predict_proba_with_ds. They now
require the neighbors and distances to be passed as input arguments.

• Added random_state parameter to all methods in order to have reproducible results.

• Added Python 3.7 support.

• New and updated examples.

• Added performance tests comparing the speed of Faiss vs sklearn KNN.

3.4. Release history 127

https://github.com/Menelau
https://github.com/luizgh
auto_examples/simple_example.html
auto_examples/index.html

deslib Documentation, Release 0.3

Bug Fixes

• Fixed bug with META-DES when checking if the meta-classifier was already fitted.

• Fixed bug with random state on DCS techniques.

• Fixed high memory consumption on DES probabilistic methods.

• Fixed bug on Heterogeneous ensembles example and notebooks examples.

• Fixed bug on deslib.des.probabilistic.MinimumDifference when only samples from a single
class are provided.

• Fixed problem with DS methods when the number of training examples was lower than the k value.

• Fixed division by zero problems with APosteriori APriori MLA when the distance is equal to zero.

• Fixed bug on deslib.utils.prob_functions.exponential_func() when the support obtained
for the correct class was equal to one.

3.4.2 Version 0.2

• Second release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Changes

• Implemented Label Encoding: labels are no longer required to be integers starting from 0. Categorical (strings)
and non-sequential integers are supported (similarly to scikit-learn).

• Batch processing: Vectorized implementation of predictions. Large speed-up in computation time (100x faster
in some cases).

• Predict proba: only required (in the base estimators) if using methods that rely on probabilities (or if requesting
probabilities from the ensemble).

• Improved documentation: Included additional examples, a step-by-step tutorial on how to use the library.

• New integration tests: Now covering predict_proba, IH and DFP.

• Bug fixes on 1) predict_proba 2) KNOP with DFP.

3.4.3 Version 0.1

API

• First release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Implemented methods:

• DES techniques currently available are:

1. META-DES

2. K-Nearest-Oracle-Eliminate (KNORA-E)

3. K-Nearest-Oracle-Union (KNORA-U)

4. Dynamic Ensemble Selection-Performance(DES-P)

128 Chapter 3. API Reference

https://github.com/Menelau
https://github.com/luizgh
https://github.com/Menelau
https://github.com/luizgh

deslib Documentation, Release 0.3

5. K-Nearest-Output Profiles (KNOP)

6. Randomized Reference Classifier (DES-RRC)

7. DES Kullback-Leibler Divergence (DES-KL)

8. DES-Exponential

9. DES-Logarithmic

10. DES-Minimum Difference

11. DES-Clustering

12. DES-KNN

• DCS techniques:

1. Modified Classifier Rank (Rank)

2. Overall Locall Accuracy (OLA)

3. Local Class Accuracy (LCA)

4. Modified Local Accuracy (MLA)

5. Multiple Classifier Behaviour (MCB)

6. A Priori Selection (A Priori)

7. A Posteriori Selection (A Posteriori)

• Baseline methods:

1. Oracle

2. Single Best

3. Static Selection

• Dynamic Frienemy Prunning (DFP)

• Diversity measures

• Aggregation functions

Version 0.1

API

• First release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Implemented methods:

• DES techniques currently available are:

1. META-DES

2. K-Nearest-Oracle-Eliminate (KNORA-E)

3. K-Nearest-Oracle-Union (KNORA-U)

4. Dynamic Ensemble Selection-Performance(DES-P)

5. K-Nearest-Output Profiles (KNOP)

3.4. Release history 129

https://github.com/Menelau
https://github.com/luizgh

deslib Documentation, Release 0.3

6. Randomized Reference Classifier (DES-RRC)

7. DES Kullback-Leibler Divergence (DES-KL)

8. DES-Exponential

9. DES-Logarithmic

10. DES-Minimum Difference

11. DES-Clustering

12. DES-KNN

• DCS techniques:

1. Modified Classifier Rank (Rank)

2. Overall Locall Accuracy (OLA)

3. Local Class Accuracy (LCA)

4. Modified Local Accuracy (MLA)

5. Multiple Classifier Behaviour (MCB)

6. A Priori Selection (A Priori)

7. A Posteriori Selection (A Posteriori)

• Baseline methods:

1. Oracle

2. Single Best

3. Static Selection

• Dynamic Frienemy Prunning (DFP)

• Diversity measures

• Aggregation functions

Version 0.2

• Second release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Changes

• Implemented Label Encoding: labels are no longer required to be integers starting from 0. Categorical (strings)
and non-sequential integers are supported (similarly to scikit-learn).

• Batch processing: Vectorized implementation of predictions. Large speed-up in computation time (100x faster
in some cases).

• Predict proba: only required (in the base estimators) if using methods that rely on probabilities (or if requesting
probabilities from the ensemble).

• Improved documentation: Included additional examples, a step-by-step tutorial on how to use the library.

• New integration tests: Now covering predict_proba, IH and DFP.

• Bug fixes on 1) predict_proba 2) KNOP with DFP.

130 Chapter 3. API Reference

https://github.com/Menelau
https://github.com/luizgh

deslib Documentation, Release 0.3

Version 0.3

• Third release of the stable API. By Rafael M O Cruz and Luiz G Hafemann

Changes

• All techniques are now sklearn estimators and passes the check_estimator tests.

• All techniques can now be instantiated without a trained pool of classifiers.

• Pool of classifiers can now be fitted together with the ensemble techniques. See simple example.

• Added support for Faiss (Facebook AI Similarity Search) for fast region of competence estimation on GPU.

• Added DES Multi-class Imbalance method deslib.des.des_mi.DESMI.

• Added stacked classifier model, deslib.static.stacked.StackedClassifier to the static ensem-
ble module.

• Added a new Instance Hardness measure utils.instance_hardness.kdn_score().

• Added Instance Hardness support when using DES-Clustering.

• Added label encoder for the static module.

• Added a script utils.datasetswith routines to generate synthetic datasets (e.g., the P2 and XOR datasets).

• Changed name of base classes (Adding Base to their following scikit-learn standards).

• Removal of DFP_mask, neighbors and distances as class variables.

• Changed signature of methods estimate_competence, predict_with_ds, predict_proba_with_ds. They now
require the neighbors and distances to be passed as input arguments.

• Added random_state parameter to all methods in order to have reproducible results.

• Added Python 3.7 support.

• New and updated examples.

• Added performance tests comparing the speed of Faiss vs sklearn KNN.

Bug Fixes

• Fixed bug with META-DES when checking if the meta-classifier was already fitted.

• Fixed bug with random state on DCS techniques.

• Fixed high memory consumption on DES probabilistic methods.

• Fixed bug on Heterogeneous ensembles example and notebooks examples.

• Fixed bug on deslib.des.probabilistic.MinimumDifference when only samples from a single
class are provided.

• Fixed problem with DS methods when the number of training examples was lower than the k value.

• Fixed division by zero problems with APosteriori APriori MLA when the distance is equal to zero.

• Fixed bug on deslib.utils.prob_functions.exponential_func() when the support obtained
for the correct class was equal to one.

3.4. Release history 131

https://github.com/Menelau
https://github.com/luizgh
auto_examples/simple_example.html
auto_examples/index.html

deslib Documentation, Release 0.3

132 Chapter 3. API Reference

CHAPTER 4

Example

Here we present an example of the KNORA-E techniques using a random forest to generate the pool of classifiers:

from sklearn.ensemble import RandomForestClassifier
from deslib.des.knora_e import KNORAE

Train a pool of 10 classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10)
pool_classifiers.fit(X_train, y_train)

Initialize the DES model
knorae = KNORAE(pool_classifiers)

Preprocess the Dynamic Selection dataset (DSEL)
knorae.fit(X_dsel, y_dsel)

Predict new examples:
knorae.predict(X_test)

The library accepts any list of classifiers (from scikit-learn) as input, including a list containing different classifier
models (heterogeneous ensembles). More examples to use the API can be found in the examples page.

133

auto_examples/index.html

deslib Documentation, Release 0.3

134 Chapter 4. Example

CHAPTER 5

Citation

If you use DESLib in a scientific paper, please consider citing the following paper:

Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin and George D. C. Cavalcanti DESlib: A Dynamic ensemble
selection library in Python. arXiv preprint arXiv:1802.04967 (2018).

@article{cruz_deslib:2018,
title = {{DESlib}: {A} {Dynamic} ensemble selection library in {Python}},
journal = {arXiv preprint arXiv:1802.04967},
author = {Cruz, Rafael M. O. and Hafemann, Luiz G. and Sabourin, Robert and

→˓Cavalcanti, George D. C.},
year = {2018}

}

5.1 References

135

deslib Documentation, Release 0.3

136 Chapter 5. Citation

Python Module Index

d
deslib.dcs, 15
deslib.dcs.a_posteriori, 19
deslib.dcs.a_priori, 22
deslib.dcs.base, 16
deslib.dcs.lca, 25
deslib.dcs.mcb, 28
deslib.dcs.mla, 31
deslib.dcs.ola, 34
deslib.dcs.rank, 37
deslib.des, 40
deslib.des.base, 40
deslib.des.des_clustering, 46
deslib.des.des_knn, 51
deslib.des.des_mi, 62
deslib.des.des_p, 48
deslib.des.knop, 54
deslib.des.knora_e, 56
deslib.des.knora_u, 59
deslib.des.meta_des, 43
deslib.des.probabilistic, 66
deslib.static, 80
deslib.static.oracle, 80
deslib.static.single_best, 81
deslib.static.stacked, 83
deslib.static.static_selection, 82
deslib.util, 84
deslib.util.aggregation, 87
deslib.util.datasets, 95
deslib.util.diversity, 85
deslib.util.faiss_knn_wrapper, 94
deslib.util.instance_hardness, 93
deslib.util.prob_functions, 91

137

deslib Documentation, Release 0.3

138 Python Module Index

Index

A
agreement_measure() (in module deslib.util.diversity), 85
APosteriori (class in deslib.dcs.a_posteriori), 19
APriori (class in deslib.dcs.a_priori), 22
average_combiner() (in module deslib.util.aggregation),

87
average_rule() (in module deslib.util.aggregation), 88

B
BaseDCS (class in deslib.dcs.base), 16
BaseDES (class in deslib.des.base), 40
BaseProbabilistic (class in deslib.des.probabilistic), 64

C
ccprmod() (in module deslib.util.prob_functions), 91
classify_with_ds() (deslib.dcs.base.BaseDCS method), 17
classify_with_ds() (deslib.des.base.BaseDES method), 41
compute_pairwise_diversity() (in module

deslib.util.diversity), 85
correlation_coefficient() (in module deslib.util.diversity),

86

D
DESClustering (class in deslib.des.des_clustering), 46
DESKL (class in deslib.des.probabilistic), 69
DESKNN (class in deslib.des.des_knn), 51
deslib.dcs (module), 15
deslib.dcs.a_posteriori (module), 19
deslib.dcs.a_priori (module), 22
deslib.dcs.base (module), 16
deslib.dcs.lca (module), 25
deslib.dcs.mcb (module), 28
deslib.dcs.mla (module), 31
deslib.dcs.ola (module), 34
deslib.dcs.rank (module), 37
deslib.des (module), 40
deslib.des.base (module), 40
deslib.des.des_clustering (module), 46
deslib.des.des_knn (module), 51

deslib.des.des_mi (module), 62
deslib.des.des_p (module), 48
deslib.des.knop (module), 54
deslib.des.knora_e (module), 56
deslib.des.knora_u (module), 59
deslib.des.meta_des (module), 43
deslib.des.probabilistic (module), 64, 66, 69, 72, 75, 77
deslib.static (module), 80
deslib.static.oracle (module), 80
deslib.static.single_best (module), 81
deslib.static.stacked (module), 83
deslib.static.static_selection (module), 82
deslib.util (module), 84
deslib.util.aggregation (module), 87
deslib.util.datasets (module), 95
deslib.util.diversity (module), 85
deslib.util.faiss_knn_wrapper (module), 94
deslib.util.instance_hardness (module), 93
deslib.util.prob_functions (module), 91
DESMI (class in deslib.des.des_mi), 62
DESP (class in deslib.des.des_p), 48
disagreement_measure() (in module deslib.util.diversity),

86
double_fault() (in module deslib.util.diversity), 86

E
entropy_func() (in module deslib.util.prob_functions), 92
estimate_competence() (deslib.dcs.a_posteriori.APosteriori

method), 20
estimate_competence() (deslib.dcs.a_priori.APriori

method), 23
estimate_competence() (deslib.dcs.base.BaseDCS

method), 17
estimate_competence() (deslib.dcs.lca.LCA method), 26
estimate_competence() (deslib.dcs.mcb.MCB method),

29
estimate_competence() (deslib.dcs.mla.MLA method), 32
estimate_competence() (deslib.dcs.ola.OLA method), 35
estimate_competence() (deslib.dcs.rank.Rank method),

38

139

deslib Documentation, Release 0.3

estimate_competence() (deslib.des.base.BaseDES
method), 42

estimate_competence() (deslib.des.des_clustering.DESClustering
method), 47

estimate_competence() (deslib.des.des_knn.DESKNN
method), 52

estimate_competence() (deslib.des.des_mi.DESMI
method), 62

estimate_competence() (deslib.des.des_p.DESP method),
49

estimate_competence() (deslib.des.knora_e.KNORAE
method), 57

estimate_competence() (deslib.des.knora_u.KNORAU
method), 60

estimate_competence() (deslib.des.probabilistic.BaseProbabilistic
method), 65

estimate_competence() (deslib.des.probabilistic.DESKL
method), 70

estimate_competence() (deslib.des.probabilistic.Exponential
method), 76

estimate_competence() (deslib.des.probabilistic.Logarithmic
method), 78

estimate_competence() (deslib.des.probabilistic.MinimumDifference
method), 73

estimate_competence() (deslib.des.probabilistic.RRC
method), 67

estimate_competence_from_proba()
(deslib.des.base.BaseDES method), 42

estimate_competence_from_proba()
(deslib.des.knop.KNOP method), 55

estimate_competence_from_proba()
(deslib.des.meta_des.METADES method),
45

Exponential (class in deslib.des.probabilistic), 75
exponential_func() (in module

deslib.util.prob_functions), 92

F
FaissKNNClassifier (class in

deslib.util.faiss_knn_wrapper), 94
fit() (deslib.dcs.a_posteriori.APosteriori method), 20
fit() (deslib.dcs.a_priori.APriori method), 23
fit() (deslib.dcs.lca.LCA method), 26
fit() (deslib.dcs.mcb.MCB method), 30
fit() (deslib.dcs.mla.MLA method), 33
fit() (deslib.dcs.ola.OLA method), 36
fit() (deslib.dcs.rank.Rank method), 39
fit() (deslib.des.des_clustering.DESClustering method),

47
fit() (deslib.des.des_knn.DESKNN method), 53
fit() (deslib.des.des_mi.DESMI method), 63
fit() (deslib.des.des_p.DESP method), 50
fit() (deslib.des.knop.KNOP method), 55
fit() (deslib.des.knora_e.KNORAE method), 58

fit() (deslib.des.knora_u.KNORAU method), 60
fit() (deslib.des.meta_des.METADES method), 45
fit() (deslib.des.probabilistic.BaseProbabilistic method),

65
fit() (deslib.des.probabilistic.DESKL method), 70
fit() (deslib.des.probabilistic.Exponential method), 76
fit() (deslib.des.probabilistic.Logarithmic method), 79
fit() (deslib.des.probabilistic.MinimumDifference

method), 73
fit() (deslib.des.probabilistic.RRC method), 68
fit() (deslib.static.oracle.Oracle method), 80
fit() (deslib.static.single_best.SingleBest method), 81
fit() (deslib.static.stacked.StackedClassifier method), 83
fit() (deslib.static.static_selection.StaticSelection

method), 83
fit() (deslib.util.faiss_knn_wrapper.FaissKNNClassifier

method), 94

H
hardness_region_competence() (in module

deslib.util.instance_hardness), 93

K
kdn_score() (in module deslib.util.instance_hardness), 94
kneighbors() (deslib.util.faiss_knn_wrapper.FaissKNNClassifier

method), 95
KNOP (class in deslib.des.knop), 54
KNORAE (class in deslib.des.knora_e), 56
KNORAU (class in deslib.des.knora_u), 59

L
LCA (class in deslib.dcs.lca), 25
log_func() (in module deslib.util.prob_functions), 92
Logarithmic (class in deslib.des.probabilistic), 77

M
majority_voting() (in module deslib.util.aggregation), 88
majority_voting_rule() (in module

deslib.util.aggregation), 88
make_banana() (in module deslib.util.datasets), 96
make_banana2() (in module deslib.util.datasets), 97
make_circle_square() (in module deslib.util.datasets), 97
make_P2() (in module deslib.util.datasets), 95
make_xor() (in module deslib.util.datasets), 97
maximum_combiner() (in module

deslib.util.aggregation), 88
maximum_rule() (in module deslib.util.aggregation), 88
MCB (class in deslib.dcs.mcb), 28
median_combiner() (in module deslib.util.aggregation),

89
median_rule() (in module deslib.util.aggregation), 89
METADES (class in deslib.des.meta_des), 43
min_difference() (in module deslib.util.prob_functions),

93

140 Index

deslib Documentation, Release 0.3

minimum_combiner() (in module deslib.util.aggregation),
89

minimum_rule() (in module deslib.util.aggregation), 89
MinimumDifference (class in deslib.des.probabilistic), 72
MLA (class in deslib.dcs.mla), 31

N
negative_double_fault() (in module deslib.util.diversity),

86

O
OLA (class in deslib.dcs.ola), 34
Oracle (class in deslib.static.oracle), 80

P
potential_func() (deslib.des.probabilistic.BaseProbabilistic

static method), 66
predict() (deslib.dcs.a_posteriori.APosteriori method), 21
predict() (deslib.dcs.a_priori.APriori method), 24
predict() (deslib.dcs.lca.LCA method), 27
predict() (deslib.dcs.mcb.MCB method), 30
predict() (deslib.dcs.mla.MLA method), 33
predict() (deslib.dcs.ola.OLA method), 36
predict() (deslib.dcs.rank.Rank method), 39
predict() (deslib.des.des_clustering.DESClustering

method), 47
predict() (deslib.des.des_knn.DESKNN method), 53
predict() (deslib.des.des_mi.DESMI method), 63
predict() (deslib.des.des_p.DESP method), 50
predict() (deslib.des.knop.KNOP method), 55
predict() (deslib.des.knora_e.KNORAE method), 58
predict() (deslib.des.knora_u.KNORAU method), 61
predict() (deslib.des.meta_des.METADES method), 45
predict() (deslib.des.probabilistic.DESKL method), 71
predict() (deslib.des.probabilistic.Exponential method),

76
predict() (deslib.des.probabilistic.Logarithmic method),

79
predict() (deslib.des.probabilistic.MinimumDifference

method), 74
predict() (deslib.des.probabilistic.RRC method), 68
predict() (deslib.static.oracle.Oracle method), 81
predict() (deslib.static.single_best.SingleBest method), 82
predict() (deslib.static.stacked.StackedClassifier method),

84
predict() (deslib.static.static_selection.StaticSelection

method), 83
predict() (deslib.util.faiss_knn_wrapper.FaissKNNClassifier

method), 95
predict_proba() (deslib.dcs.a_posteriori.APosteriori

method), 21
predict_proba() (deslib.dcs.a_priori.APriori method), 24
predict_proba() (deslib.dcs.lca.LCA method), 27
predict_proba() (deslib.dcs.mcb.MCB method), 30

predict_proba() (deslib.dcs.mla.MLA method), 33
predict_proba() (deslib.dcs.ola.OLA method), 36
predict_proba() (deslib.dcs.rank.Rank method), 39
predict_proba() (deslib.des.des_clustering.DESClustering

method), 48
predict_proba() (deslib.des.des_knn.DESKNN method),

53
predict_proba() (deslib.des.des_mi.DESMI method), 63
predict_proba() (deslib.des.des_p.DESP method), 50
predict_proba() (deslib.des.knop.KNOP method), 56
predict_proba() (deslib.des.knora_e.KNORAE method),

58
predict_proba() (deslib.des.knora_u.KNORAU method),

61
predict_proba() (deslib.des.meta_des.METADES

method), 45
predict_proba() (deslib.des.probabilistic.DESKL

method), 71
predict_proba() (deslib.des.probabilistic.Exponential

method), 76
predict_proba() (deslib.des.probabilistic.Logarithmic

method), 79
predict_proba() (deslib.des.probabilistic.MinimumDifference

method), 74
predict_proba() (deslib.des.probabilistic.RRC method),

68
predict_proba() (deslib.static.single_best.SingleBest

method), 82
predict_proba() (deslib.static.stacked.StackedClassifier

method), 84
predict_proba() (deslib.util.faiss_knn_wrapper.FaissKNNClassifier

method), 95
predict_proba_ensemble() (in module

deslib.util.aggregation), 89
predict_proba_ensemble_weighted() (in module

deslib.util.aggregation), 90
predict_proba_with_ds() (deslib.dcs.base.BaseDCS

method), 17
predict_proba_with_ds() (deslib.des.base.BaseDES

method), 42
product_combiner() (in module deslib.util.aggregation),

90
product_rule() (in module deslib.util.aggregation), 90

Q
Q_statistic() (in module deslib.util.diversity), 85

R
Rank (class in deslib.dcs.rank), 37
ratio_errors() (in module deslib.util.diversity), 87
RRC (class in deslib.des.probabilistic), 66

S
score() (deslib.dcs.a_posteriori.APosteriori method), 21

Index 141

deslib Documentation, Release 0.3

score() (deslib.dcs.a_priori.APriori method), 24
score() (deslib.dcs.lca.LCA method), 27
score() (deslib.dcs.mcb.MCB method), 30
score() (deslib.dcs.mla.MLA method), 33
score() (deslib.dcs.ola.OLA method), 36
score() (deslib.dcs.rank.Rank method), 39
score() (deslib.des.des_clustering.DESClustering

method), 48
score() (deslib.des.des_knn.DESKNN method), 53
score() (deslib.des.des_mi.DESMI method), 63
score() (deslib.des.des_p.DESP method), 50
score() (deslib.des.knop.KNOP method), 56
score() (deslib.des.knora_e.KNORAE method), 58
score() (deslib.des.knora_u.KNORAU method), 61
score() (deslib.des.meta_des.METADES method), 46
score() (deslib.des.probabilistic.DESKL method), 71
score() (deslib.des.probabilistic.Exponential method), 77
score() (deslib.des.probabilistic.Logarithmic method), 79
score() (deslib.des.probabilistic.MinimumDifference

method), 74
score() (deslib.des.probabilistic.RRC method), 68
score() (deslib.static.oracle.Oracle method), 81
score() (deslib.static.stacked.StackedClassifier method),

84
select() (deslib.dcs.a_posteriori.APosteriori method), 21
select() (deslib.dcs.a_priori.APriori method), 24
select() (deslib.dcs.base.BaseDCS method), 18
select() (deslib.dcs.lca.LCA method), 27
select() (deslib.dcs.mcb.MCB method), 31
select() (deslib.dcs.mla.MLA method), 34
select() (deslib.dcs.ola.OLA method), 36
select() (deslib.dcs.rank.Rank method), 39
select() (deslib.des.base.BaseDES method), 43
select() (deslib.des.des_clustering.DESClustering

method), 48
select() (deslib.des.des_knn.DESKNN method), 53
select() (deslib.des.des_mi.DESMI method), 64
select() (deslib.des.des_p.DESP method), 51
select() (deslib.des.knop.KNOP method), 56
select() (deslib.des.knora_e.KNORAE method), 59
select() (deslib.des.knora_u.KNORAU method), 61
select() (deslib.des.meta_des.METADES method), 46
select() (deslib.des.probabilistic.BaseProbabilistic

method), 66
select() (deslib.des.probabilistic.DESKL method), 71
select() (deslib.des.probabilistic.Exponential method), 77
select() (deslib.des.probabilistic.Logarithmic method), 79
select() (deslib.des.probabilistic.MinimumDifference

method), 74
select() (deslib.des.probabilistic.RRC method), 69
SingleBest (class in deslib.static.single_best), 81
softmax() (in module deslib.util.prob_functions), 93
source_competence() (deslib.des.probabilistic.BaseProbabilistic

method), 66

source_competence() (deslib.des.probabilistic.DESKL
method), 72

source_competence() (deslib.des.probabilistic.Exponential
method), 77

source_competence() (deslib.des.probabilistic.Logarithmic
method), 80

source_competence() (deslib.des.probabilistic.MinimumDifference
method), 74

source_competence() (deslib.des.probabilistic.RRC
method), 69

StackedClassifier (class in deslib.static.stacked), 83
StaticSelection (class in deslib.static.static_selection), 82

W
weighted_majority_voting() (in module

deslib.util.aggregation), 90
weighted_majority_voting_rule() (in module

deslib.util.aggregation), 91

142 Index

	Introduction
	Philosophy
	API Reference
	User guide
	API Reference
	General examples
	Release history

	Example
	Citation
	References

	Python Module Index

